URL Mapping
with Routes

PyWorks 2008
Mike Naberezny

|\ ETT e ELE
Software

http://maintainable.com

About Me

® http://mikenaberezny.com
® http://maintainable.com

® http://ohloh.net/accounts/mnaberez

Maintainable
Software

http://mikenaberezny.com
http://mikenaberezny.com
http://maintainable.com
http://maintainable.com

Introduction

Routes

® Answers “how do | map URLs to my code?”

® Started as a port of the routing system from
Ruby on Rails, still very similar to Rails

® Routes itself has now been ported to PHP 5
as part of the Horde Project (Horde/Routes)

Maintainable
Software

Routes Ecosystem

Module: ActionController::Routing

rubyonrails.org/classes/ActionController/Routing.html

endor. oller/r

X 9/
vendor/ralls/actionpack/lib/action_controller/routing/route.rb

endor _controller/routing/route_set.rb
rb

¢ 9,
vendor/ralls/actionpack/lib/action_controller/routing.rb

The routing module provides URL rewriting in native Ruby. It's a way to redirect incoming requests to controllers and actions. This
replaces mod_rewrite rules. Best of all, Rails’ Routing works with any web server. Routes are defined in config/routes

Consider the following route, installed by Rails when you generate your applicatios
map.connect ':controller/:action, a’

This route states that it expects requests to consist of a :controller followed by an :action that in turn is fed some
Suppose you get an incoming request for /blog/edit/22, you'll end up with:

Think of creating routes as drawing a map for your requests. The map tells them where to go based on some predefined pattern:

ActionController::Routing: :Routes.draw do |map|
Pattern 1 tells some request to go to one place
Pattern 2 tell them to go to another

end
The following symbols are special:

r maps to your controller name
maps to an action with your controllers

Other names simply map to a parameter as in the case of :id.

Route priority

Not all routes are created equally. Routes have priority defined by the order of appearance of the routes in the config/routes.zb file.
The priority goes from top to bottom. The last route in that file is at the lowest priority and will be applied last. If no route matches,
404 is returned.

Within blocks, the empty pattern is at the highest priority. In practice this works out nicely:
ActionController: ng es.draw do |map|
map.with_opti log' do |blog|
blog.show *
end

map.connect ':controller/:action/:view'

Maintainable
Software

Routes.

Routes

Routes is a Python re-implementation of the Rails routes system for mapping URL's to Controllers/Actions and
generating URL's. Routes makes it easy to create pretty and concise URL's that are RESTful with little effort.

Speedy and dynamic URL generation means you get a URL with minimal cruft (no big dangling query args).
Shortcut features like Named Routes cut down on repetitive typing.

Current features:

© Named Routes
Sophisticated Route lookup and URL generation
Wildcard path's before and after static parts
Groupings syntax to allow flexible URL's to accommodate almost any need
Sub-domain support built-in
Conditional matching based on domain, cookies, HTTP method (RESTful), and more
Easily extensible utilizing custom condition functions and route generation functions
Extensive unit tests

Buzzword Compliance: REST, DRY

News

Feb. 26th, 2008
Routes 1.7.2:
o Fixed bug with keyword args not being coerced to raw string properly.
Nov. 16th, 2007
Routes 1.7.1:

o Fixed bug with sub-domains from route defaults getting encoded to unicode resulting in a unicode route
which then caused url_for to throw an exception.

© Removed duplicate assignment in map.resource. Patch by Mike Naberezny.

o Applied test patch fix for path checking. Thanks Mike Naberezny.

Horde/Routes: Elegant URL Handling

&_)S{i Routes

Horde/Routes tackles an interesting problem that comes up
frequently in web development: how do you map a URL to
your code?

There are many solutions to this problem ranging from
using the URL paths as an object publishing hierarchy to
regular expression matching. Horde/Routes goes a slightly
different way.

Using Horde/Routes, you specify parts of the URL path and
how to match them to your Controllers and Actions. The
specific web framework you're using may actually call them
by slightly different names, but for the sake of consistency
we will use these names.

Horde/Routes lets you have multiple ways to get to the
same Controller and Action, and uses an intelligent lookup
mechanism to try and guarantee you the URL with the least
cruft* when generating the URL.

URL Cruft
Shorthand reference to what will occur if a Route can't
handle all the arguments we want to send it. Those
arguments become HTTP query args (/scmething

arg), which we try to avoid when generating
a URL.

Python Version

Horde/Routes, and even this website, are directly derived
from the Routes project for Python, by Ben Bangert.

http://routes.

Home Install Integrate Manual

Latest Version
Version 0.3.0

Developers
Mike Naberezny
Chuck Hagenbuch

License

Horde/Routes is free software,
covered by a standard BSD
license and is © 2007-2008
The Horde Project.

Horde/Routes is part of the Horde Project.

groovie.org

http://dev.horde.org/routes
http://dev.horde.org/routes

Routes

Provides solutions for both recognizing URLs
and generating URLs

Standalone component that is easy to
integrate and web framework agnostic

Used by Pylons and others

Developed by Ben Bangert & contributors

Maintainable
Software

Installation

® Available as source distribution or egg
http://pypi.python.org/pypi/Routes

® easy install routes

Maintainable
Software

http://pypi.python.org/pypi/Routes
http://pypi.python.org/pypi/Routes

Terminology

® A web application exposed by Routes is
organized at the top-level into controllers

® Each controller is typically responsible for a
single application resource (usually a noun)

® PostsController
® CommentsController

® AuthorsController

Maintainable
Software

Terminology

® Each controller responds to actions (usually a
verb) that act on a resource

@ PostsController

e index, show, update, delete*

Maintainabl . . »
m soafutr:N:nrnea y *Rails calls this “destroy

Terminology

® The action of a controller may receive other
pieces of the URL as parameters.

® /:controller/:action/:id

® /posts/show/5

Maintainable
Software

Setting up the Mapper

Mapper

® Mapper is the core of the Routes system. You
connect () routes to the mapper.

® You can then match () a URL against the set
of routes you have connected.

Maintainable
Software

Mapper

® As far as Routes is concerned, the list of
controller names is just a list of names.

® Routes just performs matching. It’s up to you
or your framework to dispatch what it
matches into your application structure.

Maintainable
Software

Mapper

>>> import routes
>>> map = routes.Mapper()
>>> map.connect(':controller/:action/:id")

>>> map.match('/blogs/show/1")

No match!

Maintainable
Software

Mapper

® Internally, Routes uses regular expressions to
match connected routes against URLs.

® These regular expressions must be generated
before routes can be matched.

Maintainable
Software

Create RegExps

® You need to create regs() on the Mapper
before its routes can be matched.

® Controllers are special.

® Routes needs to know the name of every
controller in your application to create regs().

Maintainable
Software

Create RegExps

>>> import routes

>>> map = routes.Mapper()

>>> map.connect(':controller/:action/:id")
>>> map.create_regs(['blogs'])

>>> map.match('/blogs/show/1")
{"'action': u'show', 'controller': u'blogs', "id': u'l'}

Option |
Pass a list of all controller names to create regs|()

Maintainable
Software

Create RegExps

def scanner(directory): *directory is optional
return ['blogs']

map = routes.Mapper()

map = routes.Mapper(controller_scan=scanner, directory='/controllers"')
map .connect(' :controller/:action/:id")

map.create_regs()

>>> map.match('/blogs/show/1")
{'action': u'show', 'controller': u'blogs', 'id':

Option 2
controller scan callback builds controller list

Maintainable
Software

Create RegExps

$ touch ./controllers/blogs.py

>>> import routes

>>> map = routes.Mapper()

>>> map = routes.Mapper(directory="./controllers"')
>>> map.connect(':controller/:action/:id")

>>> map.create_regs()

>>> map.match('/blogs/show/1")
{"'action': u'show', 'controller': u'blogs', "id': u'l'}

Option 3
Default routes.util.controller scan function

Maintainable
Software

Tips

>>> import routes

>>> map = routes.Mapper(directory="'./controllers', always_scan=True)
>>> map.connect(':controller/:action/:id")

>>> map.match('/blogs/show/1")

{'action': u'show', 'controller': u'blogs', 'id': u'l'}

® always scan Will cause create regs () called
before any match ().

® This is useful mostly during development.

Maintainable
Software

Tips

>>> import routes
>>> map = routes.Mapper(directory='./controllers')
>>> map.controller_scan(map.directory)

['blogs']

® Call controller scan for sanity if routes
don’t match when you think they should.

Maintainable
Software

Review

Create Mapper Instance
Connect Routes to the Mapper
Generate Regular Expressions

Match or Generate

Maintainable
Software

Route Recognition

Path Parts

Path Parts: Static

import routes

map = routes.Mapper()

map.connect('atom', controller='feeds', action="show', format='atom')
map.connect('rss2', controller="feeds', action="show', format="rss2')
map.create_regs(['feeds'])

>>> map.match('/atom")
{'action': u'show', 'controller': u'feeds', 'format': u'atom'}

>>> map.match('/rss2")
{'action': u'show', 'controller': u'feeds', "format': u'rss2'}

® Both routes have static paths: atom and rss2

Maintainable
Software

Path Parts: Dynamic

import routes

map = routes.Mapper()

map.connect('feeds/:format', controller='feeds', action='show')
map.create_regs(['feeds'])

>>> map.match('/feeds/atom')
{'action': u'show', 'controller': u'feeds', '"format': u'atom'}

>>> map.match('/feeds/rss2')
{'action': u'show', 'controller': u'feeds', "format': u'rss2'}

® Static part: feeds

® Dynamic part: :format

Maintainable
Software

Path Parts: Wildcard

>>> import routes
>>> map = routes.Mapper()
>>> map.connect(' folders/:action/*folder_path', controller='folders')

>>> map.create_regs(['folders'])

>>> map.match('/folders/show/path/to/somewhere’)
{'action': u'show', 'controller': u'folders', 'folder_path': u'path/to/somewhere’}

® Static part: folders
® Dynamic part: :action

® Wildcard part: *folder path

Maintainable
Software

Defaults

Defaults

>>> import routes

>>> map = routes.Mapper()

>>> map.connect(':title', controller='posts', action='show')
>>> map.create_regs(['posts'])

>>> map.match('/all-about-routes')
{'action': u'show', 'controller': u'posts', "title': u'all-about-routes'}

® Routes are free-form. Controller and action
do not need to be part of the URL itself.

Maintainable
Software

Implicit Defaults

>>> import routes

>>> map = routes.Mapper()

>>> map.connect(':title')

>>> map.create_regs(['posts'])

>>> map.match('/all-about-routes')
{'action': u'index', 'controller': u'content', 'title': u'all-about-routes'}

® Gotcha. Notice magic content and index

® Mapper (explicit=False) is standard, giving
all routes implicit defaults

Maintainable
Software

Defaults

import routes

map = routes.Mapper()

map .connect('archives/:year', controller='posts',
action="show_archive', year='2008"')

map .create_regs(['posts'])

>>> map.match('/archives')
{'action': u'show_archive', 'controller': u'posts', 'year': u'2008'}

>>> map.match('/archives/2005')
{'action': u'show_archive', 'controller': u'posts', 'year': u'2005'}

® Defaults are used to implement optional
parts of the URL (year)

Maintainable
Software

Requirements &

Conditions

Requirements

import routes

map = routes.Mapper()

map . connect('archives/:year', controller="posts',
action="show_archive', year="'2008"')

map .create_regs(['posts'])

>>> map.match('/archives/2005")
{'action': u'show_archive', 'controller': u'posts', 'year': u'2005'}

>>> map.match('/archives/rat")
{"'action': u'show_archive', 'controller': u'posts', 'year': u'rat'}

® “Year of the rat” is probably not something
that we want to support.

Maintainable
Software

Requirements

import routes

map = routes.Mapper()
map .connect('archives/:year', controller='posts',
action="show_archive', year="'2008",
. requirements={"year': '\d{4}'})
>>> map.create_regs(['posts'])

>>> map.match('/archives/2005')
{'action': u'show_archive', 'controller': u'posts', 'year': u'2005'}

>>> map.match('/archives/rat')
No match!

® Requirements help cut down on validation in
application code. Be specific.

Maintainable
Software

Conditions

>>> import routes

>>> map = routes.Mapper()

>>> map.connect('posts/create’', controller="posts', action="create',
conditions={"'method':"POST'})

>>> map.create_regs(['posts'])

>>> map.environ = {"'REQUEST_METHOD': 'POST'}
>>> map.match('/posts/create')
{'action': u'create', 'controller': u'posts'}

>>> map.environ = {'REQUEST_METHOD': 'GET'}
>>> map.match('/posts/create’)
No match!

® Routes can enforce conditions on the request

environment in addition to requirements on
the URL itself.

Maintainable
Software

URL Generation

URL Generation

>>> from routes import Mapper, url_for
>>> map = Mapper()

>>> map.connect(':controller/:action/:id")
>>> map.create_regs(['articles'])

>>> url_for(controller="articles',action="show',id=3)
'/articles/show/3'

® Generating URLs allows the structures to
change without changing the application code

Maintainable
Software

Named Routes

>>> from routes import Mapper, url_for

>>> map = Mapper()

>>> map.connect('home', 'articles',
controller="articles', action="index')

>>> map.create_regs(['articles'])
>>> url_for("home')
'/articles'

® VVe can give a hame to each route as we
connect them. This should be considered a
best practice and makes generation easier.

Maintainable
Software

e,

Static Named Routes
Filter Functions
Grouping Path Parts

More conditions:
subdomain, function

Minimization

Maintainable
Software

More

Encoding
RESTful Routes
Mapper . routematch()

Alternate syntax
{controller}/{action}

Redirects

Resources

® Narrative and APl documentation
http://routes.groovie.org

® [ssue tracking and Subversion mirror
http://routes.groovie.org/trac

® Developed with Mercurial at
https://www.knowledgetap.com/hg/routes/

Maintainable
Software

http://routes.groovie.org
http://routes.groovie.org
http://routes.groovie.org/trac
http://routes.groovie.org/trac
http://bel-epa.com/hg/repos/routes/
http://bel-epa.com/hg/repos/routes/

Maintainable
Software

