MICRO TECHNOLOGY UNLIMITED
GRAPHICS SOFTWARE PACKAGE FOR THE K-1008 VISIBLE MEMORY

The graphics software package for the K-1008 Visable Memory is
designed to provide the user with a library of basic graphics
oriented subroutines. By incorporating calls to these routines,
the user can create and manipulate text and graphic images whose
complexity is limited only by the 320 by 200 display matrix size.
The graphics and text display subroutines are available only as
printed, assembled, and commented program listings since the user
is expected to assemble them into his own application programs.

In addition, two self-contained demonstration programs are
included. Both of these will run on the bare KIM with no extra
hardware other than the K-1008 Visible Memory and video monitor.
In many cases, the demonstration programs contain simplified ver-
sions of the graphics subroutine package having only enough cap-
ability to satisfy the needs of the demonstration. Printed list-
ings of the demo programs are normally included with the graphics
software package. The demo programs are also available on a stan-
dard KIM cassette for $5.00.

INCLUSIONS
In this package you should find the following:

1. Printed, assembled, and commented program listings of
A. SWIRL demonstration program
B. LIFE demonstration program
C. SDTXT Simplified text display subroutine, 22 lines 53 char.
D. Comprehensive graphics subroutine library containing point
and line plotting routines, a character drawing routine, and
an ASCII text display routine.
2. Instruction manual which your are now reading
3. Copyright notice

In addition, a standard speed KIM format cassette may be supplied
if it was specifically ordered (available only to purchasers of
the entire software package for $5.00). The cassette contains:

1. File 01 (recorded twice) SWIRL demonstration program.
Loads into locations 0000 - O3EC

2. File 02 (recorded twice) LIFE demonstration program.
Loads into locations 0000 - 3FB

3. File 03 (recorded twice) Continuation of LIFE program.
Loads into locations 1780 - 17DC

Note that the demonstration programs assume that the VM occu-
pies addresses from 2000-3FFF. If your system is configured
differently, put the first VM page number in O000B for SWIRL and
0000 for LIFE.

A separate package will be available shortly for linking
MicroSoft BASIC for the KIM with the text and graphics routines.
Using this patch package, the user may utilize the Visible Memory
for normal textual communications with BASIC (along with an ex-
ternal keyboard) and for graphic output. Repetitive graphic cal-
culations are handled by the package in machirne language thus
insuring maximum overall speed.

(1)

RUNNING THE DEMONSTRATION PROGRAMS
I. SWIRL

Swirl is a demonstration program that generates a variety of
interesting spirl and spiderweb like patterns on the screen. Two
parameters determine the appearance of the pattern and a third
either includes or suppresses lines connecting the computed
points. The user may set these parameters manually and then have
a single pattern computed and held or another routine may be in-
voked which uses a random number generator to select the par-
ameters thus giving an endless series of different patterns.

The program is based on the differential equation for a circle
which tends toward an elipse when evaluated digitally a point at a
time. As the calculation proceeds, the radius of the circle de-
creases until it is essentially zero. Since the calculation is
point by point, the visual effect on the display can be consider-
ably different from a simple inward spiral.

One may also think of the algorithm as a digital damped sine
wave generator or ultimately a digital bandpass filter. The al-
gorithm works on two variables, SIN and COS, which relate to the
sine and cosine of an angle. Basically, the program takes the
current values of SIN and COS and computes new values of both
under the control of two constants. Each time a new SIN,COS pair
is computed, it is treated as an X,Y pair and plotted on the Vis-
ible Memory screen. Straight lines may or may not connect suc-
cessive points; both give distinctive patterns.

Two constants control the program, FREQ and DAMP which, of
course, relate to the damped sine wave nature of the algorithm.
FREQ is a double precision, signed binary fraction. The larger
its value, the fewer points per revolution of the circle and
therefore the higher the frequency. The relationship between FREQ
and points per cycle is roughly linear. A value of +.9999
(7FFF1g) gives 6 points per cycle, +.5 (400074) gives about 12,
and so forth. Negative values of FREQ cause the spiral to rotate
clockwise rather than counterclockwise. DAMP is also a double
precision signed binary fraction but it must be positive for pro-
per operation. If it is negative, the oscillation will build up
instead of dying out until the fixed point arithmetic routines
overflow creating a garbage display. Normal values of DAMP are
very close to 1.0 and the useful range is from approximately 7000
to 7FFF. Smaller values of DAMP produce so few points before the
circle collapses to zero that the resulting pattern is diffuse and
uninteresting.

To run the program, first load it into KIM memory exactly as
it appears in the listing. If the cassette was ordered, load file
01 into memory. If loading was done by hand, check it (goes twice
as fast with two people, one calling out the hex and the other
reading the listing) and then immediately dump it to cassette.

The slightest error in hand loading could cause the program to
wipe itself out!

Default values for all of the parameters have been supplied.
To see the default pattern, start execution at address 002F
(SWIRL). The screen, which was initially semi-random garbage,
should be cleared and then a spiderweb-1like pattern should be
gradually built up over a time span of several seconds. It is
complete when the dark area at the center of the screen is com-
pletely filled up. The user may return to the KIM monitor with
the ST or the reset key at any time even if the pattern is not
complete.

(2)

In order to get a feel for the visual effect of the various
parameters, first try setting LINES (at address 0000) to 00 and
then go to SWIRL again. This time only the vertices of the angled
lines that were seen earlier are shown. Although the defalut FREQ
and DAMP parameters were chosen for an appealing display with
LINES equal to 1, some very impressive displays indeed are pos-
sible with LINES set to 00. For an example, set FREQ to 1102
(0001<02, 0002<11) and DAMP to 7FCO (0003<CO, 0004<7F) and execute
SWIRL again. Interrupt the program execution when the hole in the
middle is completely surrounded by a couple of dot depths of solid
white. The resulting display, particularly when viewed at a dis-
tance in a darkened room, could easily pass for an artist's con-
ception of a Black Hole; an astronomical object which is thought
to be matter crushed out of existence by its own gravity!

Returning to the original settings of FREQ, DAMP, and LINES,
lets see the effect of changing DAMP. Regenerate the default pat-
tern and fix it in your mind. Then change DAMP from 7EQ00 to 7FO0O0.
This has the effect of cutting the decay rate of the damped sine
wave in half. The visual effect is a denser display that decays
toward the center more slowly. DAMP may be further increased to
7F80, 7FCO, etc. (set 0006 to 70 to avoid overflow). As DAMP
approaches 7FFF, the density of the image becomes so great that
the pattern becomes essentially solid white and takes a long time
to complete. Conversely, as DAMP is reduced to 7C00, 7800, 7000,
etc., the pattern becomes sparser and eventually degrades into an
angular spiral. Try some of these values of DAMP with LINES set
to zero also.

All of the preceeding patterns had very nearly 6 points per
revolution of the spiral. The vertices themselves created a spi-
ral pattern as they overlapped and created moire-like effects.
Slight changes in FREQ can have a profound effect on the moire
aspect of the pattern without a significant effect on the number
of points per revolution. Try 7E80, 7F80, and 7FFF for FREQ to
see this effect. Many more points per revolution are possible by
reducing FREQ. Reduction to 4000, 2000, 1000, and even lower will
cause the vertices to become so closely spaced that the effect of
a continuous curve (within the resolution constraint of the dis-
play) is created. Also note that decreasing FREQ apparently
increases the damping causing the spiral to decay after fewer rev-
olutions than before. This effect may be countered by increasing
DAMP. For example, if FREQ was reduced in half from, say, 3000 to
1800, then the difference between DAMP and 7FFF should also be
reduced in half, say from 7D00 to 7E80. The lower values of FREQ
are particularly effective with LINES set to zero. If FREQ is low
enough, there will be no visual difference between LINES=1 and
LINES=0.

Some combinations of FREQ and DAMP can cause the arithmetic to
overflow, that is, SIN or COS may try to reach or exceed 1.0 in
magnitude. There is no danger of such an occurance damaging the
program or wiping out memory but the resulting pattern on the
screen can be very random looking. Simultaneous high values of
FREQ and DAMP will cause the overflow situation. Reducing COSINT
to 7000 will prevent the possibility of overflow but will also
reduce the image size somewhat. If FREQ is kept less than 4000 or
so, COSINT may be increased to 7E00 for a somewhat larger pattern.

Entry into RSWIRL (address 0045) will cause continuous random
selection of the parameters and computation of patterns. To in-
sure that the "pattern complete'" test functions properly, COSINT
should to set to 7000 to prevent the possibility of overflow. The
sequence of patterns will not repeat for days!

(3)

II. LIFE

This program is based on the Life cellular automaton algorithm
written up in Scientific American magazine several years ago. The
basic concept is that of a rectangular array of ''cells" that
"live" and '"die" in discrete time ''generations'. On the Visible
Memory screen, each picture element (pixel or bit position) is a
cell location. A live cell is represented as a One bit which
shows as a white dot and a dead or missing cell is represented as
a Zero which leaves a black area. A generation is the state or
configuration of live cells on the screen at a point in time. A
set of rules are defined which determines, based on the config-
uration of live cells in the present generation, which cells live
or die in the next generation as well as "births'" of new cells
where none had existed previously.

The rules of Life are simple. In fact, their very simplicity
yet varied and wonderful effect is what makes Life so appealing to
many people. The rules are based purely on the eight neighbors
(above, below, left of, right of, and the 4 diagonal neighbors) of
every cell position. To determine the next generation, the live
neighbors of every cell position in the life field are counted.
Based on this count and the current state of the central cell, the
fate of the central cell is determined. The rules are as follows:

A. Central cell is alive
1. 0 or 1 live neighbors, the central cell dies of starvation
2. 2 or 3 live neighbors, the central cell lives on
3. 4 or more live neighbors, the central cell dies of
overcrowding
B. Central cell is not alive
1. Fewer than or more than 3 live neighbors, the central cell
remains dead
2. Exactly 3 live neighbors, a birth is recorded.

When applying these rules to determine the next generation, the
present configuration of live cells is always used. Any births or
deaths are recorded separately and do not influence events around
the birth or death site until the next generation becomes current.
When programming Life, this may be accomplished by making a copy
of the Life field as the next generation is formed. 1In a limited
memory machine such as the KIM, buffering of lines of cells is
needed to simulate a copy of the field.

The resulting sequence of generations is completely determined
by the configuration of the initial colony of cells and is called
a life history. Such a history may end in one of several ways.
The colony may eventually die out completely leaving no cells on
the screen at all. This often happens after several generations
of spectacular buildup which suddenly shrink and disintegrate
after a few more. A colony may also become stable. This happens
when each succeeding generation is exactly like the previous one.
Cycles of generations are also possible in which a configuration
may go through a cycle of two or more differing configurations
only to return to the exact same configuration for another cycle.
A variation of the cyclic pattern is one which moves accross the
screen as it cycles. Finally, a pattern may grow without limit.
Initially this was thought to be impossible until a pattern that
periodically emits cyclic, traveling patterns was discovered.

(4)

The Life demonstration program consists of four entry points.
INIT (009A) when entered will merely clear the screen and return
to the KIM monitor. This is generally necessary before entering a
pattern by hand. KYPT (03C7) allows entry of an initial pattern
of cells using a graphic cursor and the KIM keypad. Initial pat-
terns may also be entered using the KIM monitor to write directly
into the visible memory. Other methods include reading the pat-
tern from cassette tape using the KIM monitor or generating the
pattern with another program (such as SWIRL), loading LIFE, and
executing it. The entry point LIFE (0100) starts the evolution
process. Finally, DEMO will create an appropriate, canned, init-
ial pattern and then execute LIFE to produce an amazingly beauti-
ful 1life history. '

If the reader is not familiar with the Life algorithm and some
of the folklore surrounding it, it is instructive to experiment
some before executing DEMO (leave it as a supprise!). First load
the program from the listing or cassette tape in the same manner
as SWIRL. Be sure to load the auxiliary RAM from 1780 to 17DC or
KYPT will not function. After loading (and saving on cassette if
by hand), execute INIT (009A) to clear the screen. INIT should
return to the KIM monitor after the screen is cleared. Next ex-—
ecute KYPT (03C7) (a bug in the program requires that 13 be stored
into 0001 before executing KYPT). In the middle of the screen
should be a single flashing dot. Note that the dot is off most of
the time flashing on for only a short period. This is a signal
that the graphic cursor is covering a '"dead'" cell. Press the +
key on the KIM. The flashing should change such that the dot is
on most of the time. This signifies that a live cell is being
covered. Thus the "+" key is used to set a cell at the current
cursor position. Hitting the "F" key will kill the cell under the
cursor.

The cursor may be moved horizontally and vertically by hitting
the "9" key for up, "1" key for down, "4" for left, and "6" for
right. With these movement keys, the + key, and the F key, simple
initial patterns may be easily entered or existing patterns may be
edited in a limited way. You may notice that the KIM keyboard
keys bounce less or none at all using this routine. This is due
to a more sophisticated debouncing algorithm than is utilized in
the KIM monitor.

Once the desired initial pattern is obtained, the "GO" key may
be pressed to start execution of the Life algorithm. Alternative-
ly, KYPT may be interrupted and LIFE may be manually entered at
0100. The succession of generations may be stopped by pressing
any keyboard key (except ST or RS) and KYPT will regain control at
the conclusion of the current generation (hold the key down until
the graphic cursor is seen).

Try the initial patterns shown below and note their fate.

T
=

(5)

The patterns that evolve from those on the previous page are
fundamental and well known to every Life fan. They are so common
in the result of many initial patterns that they have been given
discriptive names. See if you can match the following names with
the corresponding final patterns: Block, Honeyfarm, Glider, Blink-
er, Beehive, Lifeboat, Rocketship, Traffic Lights.

Another interesting pastime is to note the life history (num-
ber of generations before dying off, becoming stable, or becoming
cyclic) of simple lines of dots with 3, 4, 30 dots in
a line. Sometimes the addition of a single dot in a long string
can have a profound effect on the final result. Another possibil-
ity is to trace the history of all possible configurations of
three live cells, 4 cells, 5 cells, etc. Note that the majority
of the possible configurations are redundant because of symmetry,
rotation, or mirror images. Also, sparse initial patterns invar-
iably die off in one or two generations because of starvation.

Note that initial patterns should be placed in the center of
the screen to allow maximum room for expansion of the colony. If
live cells get within one cell width of the matrix boundaries, the
next generation is no longer correctly computed. This only ap-
plies to the region where the boundary is touched, the remainder
of the screen is unaffected.

Finally, before executing DEMO, try the very simple initial
pattern below. As it expands and differentiates, it will leave a
litter of the fundamental patterns discussed earlier.

To execute DEMO, simply go to OOAl. An initial pattern will
be generated and the Life algorithm will be executed on it. When
seen, numerous practical applications for Life should present
themselves. The initial pattern generated by DEMO may be changed
by altering the table of coordinates that starts at LIST (0335).
Note that the line drawing routine that connects the endpoints in
the list is limited to horizontal, vertical, and 45 degree lines.
Other angles are not harmful but will be displayed as a 45 degree
segment followed by a 90 degree segment.

(6)

III. USING SDTXT FOR TEXT DISPLAY ON THE VISIBLE MEMORY

SDTXT stands for Simplified Display TeXT which is a highly
optimized text display subroutine for the Visible Memory graphics
display. Within the constraints of structured programming tech-
nique and overall programming effort, SDTXT is optimized for small
size and fast execution speed. It is also designed to fit the
maximum practical amount of text into the 320 by 200 display
matrix without adversely affecting legibility.

Given that the SDTXT subroutine is resident in memory, either
RAM or ROM, it is as easy to generate text on the Visible Memory
display as it is with a conventional characters-only display.

Note however that SDTXT and the Visible Memory form an "output
only" display device as far as the actual ASCII character codes
are concerned. Although bit patterns forming the character shape
are readily read from the display memory, the actual ASCII codes
cannot be retrieved (unless of course one wishes to write a char-
acter recognition program to convert dot patterns to ASCII). Thus
an actual text editing application would have to maintain a sep-
arate text buffer for the ASCII codes. This is discussed in
greater detail later.

The basic display format of SDTXT - is 22 lines of 53 characters
per line. Although it would be nice to have a longer line, the
majority of low cost character-only displays actually have less
capacity than this such as 16 lines of 32 or 40 characters. The
characters themselves are formed from a 5 wide by 7 high dot
matrix. Lower case characters are represented as small capital
letters in a 5 by 5 matrix. Although normal lower case with des-
cenders is readily handled on a graphic display device, additional
room must be allowed for the descender thus reducing the number of
possible text lines. Lower case shapes without descenders were
judged to be more difficult to read than the small caps. The 5 by
7 matrix is positioned in a 6 wide by 9 high "window'" to allow
space between adjacent characters and lines. Although 25 lines
could be displayed if the interline spacing was reduced to one
dot, the sacrifice in legibility was judged to be excessive. If
the user disagrees with these choices, reassembly of the subrou-
tine with different values (within limits) of CHHI and CHWID and a
slight recoding of CSRTAD is sufficient to change them. The char-
acter font table is also readily changed to suit individual
tastes. If the user wishes to operate in the half screen mode,
NLOC should be changed to 4096 and the program reassembled. This
will cut the number of lines displayed to 11 but leave the second
4K half of the VM free for other uses.

SDTXT requires some RAM for parameter and temporary storage.
There are three types of storage required. Base page temporary
storage must be in page zero since the indirect addressing modes
require this. Four bytes are required but they need not be pre-
served between calls to SDTXT thus they may be used by other pro-
grams as well. Four additional bytes of temporary storage may be
placed anywhere and also used by other programs. Finally, three
bytes are required for the storage of parameters. Since these
hold the cursor location and the page number of the VM, they must
not be disturbed between calls to SDTXT unless the user desires to
change these parameters. Note that if all RAM storage is kept in
page O and SDTXT is reassembled that the program will be a couple
dozen bytes shorter and somewhat faster due to the use of page
zero addressing rather than absolute addressing when these locat-
ions are accessed.

(7)

As given in the program listing, SDTXT is about 1.2K bytes in
length. This may be reduced to just under 1K (for storage in a
single 2708 PROM) if the lower case characters are deleted from
the font table. The routine is completely ROMable since it does
not modify itself but it is not reentrant due to the fixed tempor-
ary storage locations. If SDTXT is placed in ROM, it is suggested
that the 4 bytes that must be in the base page be assigned just
below the KIM monitor area. It may even be possible use the KIM
monitor area itself since the routine is already debugged and
therefore need not be single-stepped. Actually, many other pro-
grams could make use of these two address pointers as well. The
remaining temporary storage may be put anywhere. Although page
zero is a desirable location, the 96 invisible bytes at the end of
the VM is also a good choice for this and any other programs as-
sociated with the display.

It is unlikely that the user will want SDTXT to reside in the
locations it was assembled for, which is the last 1.2K of a 16K
expansion starting at 2000. While a full 6502 compatible assem-—
bler is best for configuring the program, hand relocation is not
difficult. All underlined addresses must be changed if the pro-
gram itself is relocated. 1If the temporary storage locations are
also moved (quite likely), addresses referencing them will also
have to be changed. While not specifically designated in the
listing, they are easily spotted simply by noting references to
CSRX, CSRY, DCNT1l, etc. in the operand field of the instruction.

USING SDTXT

Using SDTXT is exceptionally simple. The user merely loads
the ASCII character code to be displayed or control code to be
interpreted into register A and does a JSR SDTXT. The subroutine
will then display the character at the present cursor location or
do the indicated operation and then return with all registers in-
tact. The condition codes will however be altered. SDTXT expects
the decimal mode flag to be OFF.

It cannot be emphasized enough that VMORG must be set to the
page number of the first VM location before SDTXT is used. For
example, if the VM is jumpered for addresses 2000-3FFF, then VMORG
should be 20yg5. Failure to set VMORG will change SDTXT into
MEMCLR! .

It is also important that CSRX and CSRY have valid contents
before any printable characters are sent to SDTXT. The best way
to accomplish this is to give SDTXT an ASCII FF character (0C) as
the very first operation. This action not only initializes the
cursor to the top left side, it also clears the screen.

CSRX and CSRY hold the character and line number respectively
of the present cursor location. Numbering starts at zero thus the
top line is line O and the leftmost character is character O.
SDTXT automatically moves the cursor as appropriate. The user may
also move the cursor anywhere at any time by directly changing the
values of CSRX and CSRY. Before this is done however, a call to
CSRCLR must be executed to clear the existing cursor from the
screen. The user then can change the cursor location. Following
this, a call to CSRSET will display the cursor at its new posit-
ion. CSRX must always be between O and 5273 and CSRY must be be-
tween O and 21,5 inclusive. Violation of this range restriction
is not checked and can cause random storing anywhere in memory.

(8)

In the present implementation, if more characters are received
than will fit on a line the cursor simply remains at the rightmost
character position on the line rather than forcing an automatic
carriage return line feed sequence. This capability is easily
added but can lead to problems in interfacing with BASIC unless
the terminal width is set to 52 rather than 53. A line feed that
runs off the bottom of the screen causes an upward scroll of the
text instead with the top line being lost.

Two other useful subroutines are available as part of SDTXT.
FMOVE is an extremely fast memory move subroutine that can move
any number of bytes from anywhere to anywhere in memory at an
average speed of 16 microseconds per byte. The address of the
first source byte should be stored in ADP1 and the first dest-
ination address should be stored in ADP2. A double precision move
count should be stored in DCNT1l. Although A is destroyed, the
index registers are preserved. FCLR is similar except that it can
quickly clear any amount of memory. Set up the first address to
be cleared in ADP2 and a double precision count in DCNT1 and call
FCLR. X and Y are preserved but A is destroyed.

LIMITATIONS

Unfortunately, even though a lot of effort was put into making
SDTXT efficient, it takes a finite amount of time to draw a char-
acter and move the cursor. For normal applications, such as dis-
playing text typed in or conversing with BASIC, this time will
never be noticed. Using the KIM and the VM to simulate a teletype
terminal however will most likely uncover limitations in the max-
imum baud rate that can be handled.

Approximately 2.68 milliseconds are required to draw a char-
acter and move the cursor. All control characters except FF and
LF when it causes a scroll take even less time. FF takes nearly
100 milliseconds and an LF that scrolls requires about 120 MS.
Ignoring these and only considering characters it is easily deter-
mined that the absolute maximum baud rate that can be handled is a
little more than 3600 baud. This rate can be closely approached
if a standard UART is used for the serial communication. If the
timed loop (software UART) serial routines in the KIM monitor are
used then only the stop bit duration is available for character
generation. This would limit the rate to 300 baud with one stop
bit or 600 baud with two stop bits.

Even with a UART, simple one-track programming would only al-
low 110 baud if LF and FF characters are to be received. Many
terminal systems do allow one or more nulls to be sent after such
control characters which would directly affect the maximum rate
possible without dropping characters. Three nulls would allow
operation at 300 baud and 6 would be good for 600 baud. If in-
stead the UART is connected as an interrupting device (such as on
the MTU K-1012 PROM/IO board) and a short first—-in-first-out queue
is programmed, baud rates approaching the theorectical maximum
could be handled without the need for extra nulls. In any case
the maximum communication speed is highly application dependent.

(9)

As mentioned earlier, a text editing application of the VM
with SDTXT would require a separate text buffer to hold the ASCII
representations of the characters displayed. The most straight-
forward method of handling this would be to write a text buffer
subroutine that parallels the operation of SDTXT except with ASCII
codes in an ASCII text buffer. Every character handled would then
be given to both routines which would do the same thing with their
respective character representations. When text is to be read
back or stored on a mass storage device, the ASCII text buffer
could then be read to retireve the ASCII codes.

More sophisticated functions such as line and paragraph move-
ment could be performed in one of two ways. Using the movement of
one text line to another location as an example, one could do the
operation only in the ASCII text buffer and then clear and regen-
erate the VM image by dumping the ASCII text buffer through SDTXT.
Although a second or two would be required to rewrite the screen,
this is adequate for many applications and in fact is exactly how
storage tube terminals (such as the Tektronix series) work.

The other alternative is to write a move routine that moves
the VM image directly and add it to SDTXT to parallel the same
operation in the ASCII text buffer. For the one line move exam-
ple, a routine is needed that would move all text below a given
line down one line and open up a single line hole. A second rou-
tine that moves a line of characters from elsewhere on the screen
into the hole would also be necessary. Finally a '"close up" rou-
tine to fill the hole left by the line that was moved is needed.
All of these routines would be little more than calls to other
routines already in SDTXT. Actually the vertical scrolling that
occurs after an LF is a similar operation and can be used as an
example. Clearly this is a much faster technique than rewriting
the screen and can generally be performed in less than 100 milli-
seconds. Clever programming in which individual scan lines are
moved instead of whole character lines can reduce the time re-
quired even further as well as reduce the need for "working stor-
age'" to hold the overflow line during the move.

(10)

IV. THE GRAPHICS SUPPORT SUBROUTINE PACKAGE

This package combines in one program all of the low level
graphic and character drawing functions needed for most appli-
cations. Point plotting, line drawing, and character and text
display are all provided. For the most part, structured program-
ming discipline and ease of understanding of the code were empha-
sized more than absolute minimum code size or peak performance.
Nevertheless a lot of function has been packed into the 3.2K bytes
required by the complete package. Since the programming is mod-
ular, unused routines may simply be omitted to reduce the size for
specific applications. For example, deleting the "windowed" text
display routine will save about 1K. Removing all character dis-
play functions will cut the size to less than 1K. Using SDTXT
(simplified display text) instead of DTEXT will give a total pack-
age size of less than 2K or two 2708 type PROM's.

Some RAM storage is required by the routines in this package.
Four bytes of temporary storage must be located on the base page
for use as address pointers. An additional 13 bytes of temporary
storage may be located anywhere else. All temporary storage may
be used by other programs between calls to the graphic support
routines. Finally, 17 bytes of permanent storage for parameters
are required. These may not be disturbed between calls unless the
user wants to specifically change them. Considerable savings in
program size and execution time can be realized by assigning all
RAM storage to page zero and reassembling the program.

As assembled, this package occupies locations 5500 - 3F75.
Base page temporary storage is from OOEA - OOED and general temp-
orary storage is from 0111 - 011D. Permanent storage is from 0100
- 0110. The program code itself may be hand relocated anywhere in
memory by changing all addresses designated by underlining in the
listing. Moving the temporary storage by hand is more difficult
but can be accomplished by noting all references to locations to
be moved and changing accordingly. Hopefully, assignment of temp-
orary storage to the end of the stack area will be appropriate for
the majority of users.

SIGNIFICANCE OF THE PARAMETERS

Information to most of the graphics routines is passed via
parameters in memory rather than in the registers. VMORG is the
most important parameter. It should be set to the first page num-
ber of the Visible Memory before ANY of the graphics routines are
called. For example, if the VM is jumpe