
HOSTCM SPECIFICATIONS DOCUMENT

(Feb 2, 1982) by T- Wilkinson

Introduction
The Waterloo microsystems 

11 host" which is in tact a 
called HOSTCM. This program 
files of data between the mi 
Versions have been developed f 
ESTS/E systems. This docame 
provides enough information to 
for most other computer system

Implementing one of the di 
relatively easy task but dev 
intimate knowledge of the fi 
handling features of the host 
a full or half-duplex BS232C 
the host. All messages a 
transparency through the more

support a special device called 
second computer running a program 
is required for easy transfer of 

crocomputer and the host computer, 
or both the IBM VH/CHS and the DEC 
nt describes how HOSTCM works and 
facilitate development of versions 

s.

stributed versions of HOSTCM is a 
eloping a new version requires an 
le capabilities and the terminal 
machine. Communication is done via 
line running between the micro and 
re in ASCII code to allow data 
common host device handlers.

General Principles of Operation
In normal operation, the HOSTCM program is started on the host 

computer by simply executing it. This is done using a terminal 
or using the microcomputer in "passthru" mode (i.e., simple 
terminal emulation). Once HOSTCM is running, it is ready to 
receive requests from the microcomputer, act on them, and provide 
an appropriate response.

All messages between the two computers are standardized and 
contain check-sum characters which provide for data recovery in 
the event of line transmission errors.

We recommend that the HOSTCM implementor be familiar with the 
system and file concepts described in the Systems Overview Manual 
supplied with the particular Waterloo microsystems computer to be
used.



PAGE 2

General Message Format
All messages sent from the microcomputer to the host computer 

are in the following format;

message CS LE

where:

message -one of the standard operation requests described in
the Command Summary section.

CS -the appropriate check-sum character. (not present
with Quit and Negative Acknowledgement messages.)

Lfi -the specified "lineend" character (usually hex OD).

On receiving a message from the microcomputer, the host computer 
responds with a 3-part message in the following format:

ignored RS message CS LE ignored PR

-one of the standard responses described in the 
Command Summary section.

-the appropriate check-sum character

-the specified "lineend" character (usually hex OD) .

-the specified "response" character

-the specified "prompt" character (s) . (Up to u 
characters.)

-characters appearing in this part of the transmission 
are ignored. (This may be null.)

This scheme of using a 3-part message is employed to provide 
compatibility with most common host terminal handlers which 
produce standard responses to input lines and prompts for more 
input.

Part 1 is usually generated by the host terminal handler in 
response to the "lineend" character being received.

Part 2 is produced by HOSTCM in reply to the request from the 
microcomputer.

where: 

message

CS

LE

ES

PR

ignored



PAGE 3

Part 3 is usually generated by the host terminal handler to 
indicate that it is ready to receive another message.

NOTE: The characters RS ("response"), LE ("lineend”) and PE
("prompt”) are specified in the setup option of the 
Waterloo microsystems main menu. They are normally chosen 
to correspond with common terminal prompt characters 
generated by the host system's terminal handler.

The host computer terminal system settings must be such 
as to prevent an "idle" or "fill” character being inserted 
in the messages.

Typical Settings for VM/CHS are:

micro setup PROMPT 1 1 (XOH)
LINEEND OD (CR)
RESPONSE 1 3 (XOFF)

host terminal SET BLIP OFF
CP TERM ESCAPE OFF 
CP TERM LINEEND OFF 
CP TERM LINEDEL OFF 
CP TEEM CHARDEL OFF 
CP TERM TABCHAR OFF 
CP SET MSG OFF 
CP SET EMSG OFF 
CP SET IMSG OFF 
CP SET WNG OFF

Typical settings for RSTS/E are:

micro setup PROMPT OA (LF)
LINEEND OD (CR)
RESPONSE OA (LF)

host terminal SET FILL 0
SET LOCAL ECHO

The Check-sum Formula
The check-sum character is one of the first 16 letters of the 

alphabet chosen by adding up the ASCII equivalent codes of all 
the characters in "message" modulus 16. This number is used to 
index into the string 1 ABCDEFGHIJKLMNOP’. The operation can be 
expressed as;

index <- (sum of ASCII characters) mod 16
CS <- 'ABCDEFGHIJKLMNOP* [index] (origin 0)



PAGE H

Transmission Error Handling
When either the micro c o i bpater or HOSTCM sends a message, it 

appends a check-sum character computed by the method described 
above. Similarly, when either receives a message, it computes 
the check-sum character and compares the computed value with that 
received in the transmission. If these match, the transmission 
is assumed to have been error free. If, however, they do not 
match, the receiving computer sends the ’’negative 
acknowledgement11 message which causes the sending computer to re­
transmit the message. This retrying continues until a correct 
transmission with a correct check-sum is received. Implementors 
should note that, if the HOSTCM program is not running (or 
abnormally terminates) an infinite loop could result whereby the 
micro and the host each are sending negative acknowledgements.

Command Summary
The following pages contain a list of the valid commands which 

are sent from the microcomputer to the host computer. No blanks 
exist between the various operands unless specifically indicated 
and upper and lower case characters must be used as shown.

Explanations of the various concepts involved in this system 
are included in subsequent sections.



PAGE 5

Request

o fntode ftype blank fname

fmode: R - read
w or w - write
u or u - update
A or a - append
L or 1 - load file (binary)
S or s - store file (binary)

ftype: b - binary file
t - text file

blank: a single space character

fname: name of file to be opened

responses:
b fnum

where: fnum: - host-assigned file number
(note 1,4)

xlnvalid open mode 
xlnvalid open type 
xlnvalid file name
xSxcaeded maximum number of open files 
xlnsufficient memory for file buffer

Get Request

g fnum seg

where: fnum: host-assigned file number (note 1,4)
seg: 1 - re-send previous partial/complete record

(if this operand is omitted, the next 
partial/complete record is transmitted)

responses:
bz data

where: data - all or last part of record (note 5)
bn data

where: data - partial record (note 5)
e (meaning end-of-file)
xlnvalid file number 
xFile not open
xFile not open for input or update



PAGE 6

Put Request

p fnum mode data

where: fnum; host-assigned file number (note 1,4)
mode: n - partial record

z - all or last part of record 
data: characters to be written to file (note 5)

responses:
b (meaning OK)
xlnvalid file number 
xFile not open
xFile not open for output, update or append 
x..system msg..

Seek Request

r fnum blank rnum

where: fnum; host-assigned file number (note 1,4)
blank: a single space character
rnum: number of the record to be ’•seeked" (note 1)

responses;
b (meaning OK)
xlnvalid file number 
xFile not open
xFile not open for input or update 
xlnvalid record number

Close 5eg uest 

c fnum

where: fnum: host-assigned file number (note 1,4)

responses:
b (meaning OK)
xlnvalid file number 
xFile not open

Close All Request 

a

responses;
b (meaning OK)



Attribute Request (note 3)

responses:
b hsize , msize

where: hsize - host buffer size (note 1
msize - micro buffer size (note

Size Reg uest 

v nuia 

where: num:

responses: 
b

size of micro’s buffer (note 1)

(meaning OK)
xlnvalid buffer size

Directory Open 

d fname

where: fname: name of sub-directory

responses:
b (meaning OK)
xDirectory file already open 
xNo files found

fiiEector^ Get

responses:
b data

where: data: directory record
e (meaning end-of-file)
xDirectory file not open

Directory Close

responses;
b (meaning OK)
xDirectory file not open



PAGE 8

Scratch Segaest 

y fname

where: fname: file name to be scratched

responses:
b (meaning OK)
xlnvalid file name 
x..system msg..

Rename Request 

w fname

where: fname: name of file to be renamed

responses;
b (meaning send-new-file-name)
xlnvalid filename

next message will be:

b fname
where: fname; new name for file

responses:
b (meaning OK)
xExpecting file name 
xlnvalid file name 
x..system msg..

Beg uest (note 3) 

m dev

where: dev: name of device to be mounted

responses:
b (meaning OK)
xlnvalid file name 
x..system msg..



PAGE 9

Dismount Bequest (note 3) 

u dev

where: dev: name of device to be dismounted

responses;
b (meaning OK)
xlnvalid file name 
x..system msg..

Q uit Reg uest (Note 2)

q

responses:
none (HOSTCM terminated)

I^gative Acknowledgement (Note 2)

N

responses:
retransmit last message

Note 1 All numbers are represented in decimal using the ASCII 
characters * 0123456789*.

Note 2 No check-sum character is included in these messages. The 
lineend character is included.

Note 3 These reguests are not implemented in the Commodore 
SuperPET or the Northern Digital HicroWAT microcomputers.

Note 4 File numbers must be one digit only.

Note 5 The "data" field can contain any character except the 
lineend character. However, it normally contains only the 
printable ASCII characters.



PAGE 10

Error Message Philosophy
Many of the responses from the HOSTCM program are error 

diagnostics of the form:

x error text

The "error text” is system dependent text which is usually not 
analysed by the microcomputer software but displayed on the 
screen. This means that any desirable message can be sent by 
HOSTCM to the microcomputer thereby providing a large degree of 
flexibility to the implementor of a specialized HOSTCM program.

Filename Philosophy
A number of the messages and responses in this system contain 

the name of a file or file group. This filename and/or 
devicename facility is designed to handle the wide variety of 
syntax found in the various host computer systems. As a result, 
the filenames specified in user programs on the microcomputer are 
passed directly to the HOSTCM program with only the "host." 
prefix removed. For example, the name "host.DOCUMENT SCRIPT" 
would appear as "DOCUMENT SCRIPT" in a HOSTCM message. 
Similarly, "host.*.MAC" would appear as "*.MAC" to HOSTCM. This 
technique is intended to provide complete flexibility to the 
HOSTCM implementor facilitating access to the various host 
computer devices and files.

Filenames received at the host will sometimes be prefixed with 
file type information enclosed in parentheses. This is sometimes 
supplied by the programmer and sometimes is generated by the 
microcomputer software. The specific syntax and its meanings are 
described in the System Overview Manual for the particular 
microsystem and its treatment by HOSTCM should be consistent with 
this description.

File types: Text vs Binary

When a file is opened, it is specified as being either "text" 
or "binary". The differences between these two file types can be 
described as follows.

Text files are assumed to contain only printable ASCII 
characters. These are often files or documents created with an 
editor. HOSTCM transmits these files character by character and 
they must not contain the "prompt", "lineend" or "response" 
characters defined by setug.



PAGE 11

Binary files are assumed to contain any of the 256 valid 
hexadecimal data bytes. In order to preserve data transparency 
across the system, these files are transmitted in "exploded” 
form. That is, each hexadecimal byte is translated into two 
ASCII characters in the set ’0123456789ABCDEF*. HOSTCM will 
translate data received in this manner back to its normal fori 
for storage on the host computer. Any files requested in this 
mode will be "exploded*1 by HOSTCM as they are transmitted and the 
microcomputer software will translate them back into normal form.

The Buffer Philosophy
Messages transmitted between the host and the micro are 

received into buffers on the respective machines. The micro 
informs the host of its buffer size before every Open Request via 
the Size Bequest. It assumes that the host’s buffer is at least 
as long as the micro’s buffer.

Each of the two buffers must be large enough to receive the 
entire message, including the request codes, data and the check­
sum character.

Partial/Complete Record Philosophy
In the interest of memory conservation, the microcomputer has 

only one buffer supporting the ’’host” device and this buffer is a 
fixed and arbitrary size (usually 80 bytes). The size of records 
transmitted from the host to the microcomputer must not exceed 
the size of this buffer. If longer records must be sent, they 
are broken down into "partial" records. A parameter in the 
response to the "Get Request" designates whether a complete or a 
partial record is being sent. (The microcomputer informs the
host computer of its buffer size via the "Size Bequest" message.)

The single buffer technique employed here sometimes requires 
that a record which has been sent to the microcomputer be re-sent 
at a later time. The "seg" parameter of the "Get Request" 
messaqe is used to indicate whether the "current" or "next" 
partial/complete record is to be transmitted. This situation 
only arises when processing is being done at the character level 
(e.g., the BASIC GET statement) and two or more host files are 
open at the same time.



PAGE 12

APPENDIX A

EXAMPLE 1:
The following example illustrates the message transmissions 

involved when a program on the microcomputer reads records from a 
seguential file named " testfile script" on the host computer. 
Three complete records {2 with fewer than 80 bytes and 1 with 
more than 80 bytes) are transmitted before end-of-file is 
encountered. (The 11 prompt”, "response”, “lineend" and check-sum 
characters are not shown.

operation Micro -> Host Host -> Micro
(request) (reply)

open file v8G b
ort testfile script b 1

read record 1 gi bzrecl...
read record 2 gi bzrec2...
read record 3 g 1 bnrecB (part)
read rest of 3 gi bzrec3 (rest)
read record 4 gi e
close file c 1 b

EXAMPLE 2:
The following example illustrates the message transmissions 

involved when the microcomputer reguests that a host file named 
"testfile script" be renamed to "oldfile script". (The "prompt", 
"response", "lineend" and check-sum characters are not shown).

operation Micro -> Host Host -> Micro
(reguest) (reply)

specify old name wtestfile script b
specify new name boldfile script b


