

The SuperPET

Serial Port

Written by:

Distributed by:

Revised:

J. B. Schueler

WATCOM Products Incorporated
415 Phillip Street
Waterloo, Ontario
Canada N2L 3X2

August 1984

Printed in Canada

WAT

Copyright 1984, by the author.

All rights reserved. No part of this publication may be reproduced or used in any form
or by any means - graphic, electronic, or mechanical, including photocopying, recording,
taping or information storage and retrieval systems - without written permission of the
authors.

Disclaimer

WATCOM Systems Inc. makes no representation or warranty with respect to the
adequacy of this documentation or the programs which it describes for any particular
purpose or with respect to its adequacy to produce any particular result. In no event
shall WATCOM Systems Inc., its employees, its contractors or the authors of this
documentation be liable for special, direct, indirect or consequential damages, losses,
costs, charges, claims, demands, or claim for lost profits, fees or expenses of any nature
or kind.

Table of Contents

The SuperPET Serial P o r t ..5
1 RS-232C Communications ...5
2 Control and Data Lines of the Serial P o r t .. 5
3 Mapping Between RS-232C and TTL Voltages ... 7
4 Connecting the Serial Port to A Modem ...8

4.1 Full Connection..8
4.2 Partial Connection... 9

5 Connecting the Serial Port to A Non-Modem Device ... 10
5.1 Connecting to a Serial P r in te r ..10
5.2 Connecting to a Host Computer..10
5.3 Partial Connection...11

6 The SuperPET Serial Device ... 12
6.1 Data Register (E F F O).. 13
6.2 Status Register (EFF1) ..13
6.3 Command Register (EFF2)...14
6.4 Control Register (EFF3) ... 16
6.5 Register O ffsets ..16
6.6 Selecting Parity, Word Length, and Stop B its .. 17

7 Summary.. 18

A. Simple Programming Example Using BASIC ..20

B. Transfering Data Between Two Com puters.. 22

C. Complete Programming Example Using Assembly Language....................................25
C .l ACIA Handler Initialization..25
C.2 ACIA Interrupt Connection / Disconnection ... 26
C.3 ACIA Interrupt Handling.. 27
C.4 Getting Received D a ta28
C.5 Transmitting D a ta ..29
C.6 Ring Buffer Handler..30
C.7 Serial Definitions.. 32
C.8 A Simple Terminal Em ulator... 36

D. EIA RS-232C Pin Assignments... 43

E. G lossary...44

F. R e fe ren ces .. 46

iii

The SuperPET Serial Port

1 RS-232C Communications

The RS-232C serial communications standard was introduced in 1962 and was
adopted by the Electronics Industries Association. You often hear the terms EIA and
RS-232C used interchangably. "RS" stands for "recommended standard" and "C" is the
most recent revision level.

The 25-pin connector found inside your SuperPET is the most widely used in the
industry although you may find examples where manufacturers have employed different
types of connectors. Originally, the 232 standard defined the connection between a
modem and a terminal but it is now used in a more general way. The standard describes
the function of all 25 lines or conductors in the connector. In practice, much less than
the 25 are used; sometimes as few as 3 lines. On the SuperPET, 9 are used and we will
describe which these are and what they are used for.

We will refer to the 25-pin connector as the serial "port” from here on in.

2 Control and Data Lines of the Serial Port

A cable must be provided that connects the serial port of the SuperPET to a similar
port on another device, for example a printer, a modem, or another computer. The line
joining the two devices requires a "male" connector on one end which is plugged into the
serial port of the SuperPET. A male connector has pins; a female connector has sockets.
The male connector plugs into the ’’female" connector of the serial port in the
SuperPET.

13 12 11 10 9 8 7 6 5 4 3 2 1

Serial Port Female Connector
Front View

The SuperPET uses the following pin connections of the RS-232C port.

The SuperPET Serial Port 6

Pin Definition Symbol

1 Protective Ground (PG)
2 Transmitted Data (TxD)
3 Received Data (RxD)
4 Request To Send (RTS)
5 Clear To Send (CTS)
6 Data Set Ready (DSR)
7 Signal Ground (SG)
8 Data Carrier Detect (DCD)
20 Data Terminal Ready (DTR)

In the following description, we will use two terms to describe the devices on each
end of the line. The SuperPET is an example of Data Terminal Equipment (DTE).
Terminals and printers are also examples of DTE's. On the other end of the line is the
Data Communications Equipment (DCE). A modem is an example of such a device. In
many cases, a modem is not required and a connection is made directly to another DTE.
For example, the SuperPET may be connected to a serial printer. For consistency
throughout the following discussion, we will call the SuperPET, the DTE, and anything
that we connect to it, the DCE (even another computer).

PG Protective or "chassis" Ground is normally connected to "earth" ground.
Although most equipment manufacturers provide chassis ground, they may
recommend that you provide this for their device when you connect it to the
SuperPET. In this case pin 1 of the DCE must be connected to pin 1 of the DTE.

TxD Transmitted Data is the bit stream of logical 0's (+3 to +30 volts) and l's (-3 to
-30 volts) being sent from the SuperPET (the DTE) to the other device (the
DCE).

RxD Received Data is the stream of logical 0's and l's coming from the DCE to the
DTE (the SuperPET).

RTS Request To Send is a control signal (+5 volts) instructing the DCE that the DTE
wishes to send data. The presence of -10 volts indicates that the DTE does not
wish to send data. The state of this line can be controlled from the "command
register" of the serial device (this will be discussed later).

CTS Clear To Send is a control signal sent by the DCE to the DTE indicating that the
DCE is ready to accept data.

DSR Data Set Ready is a control signal sent by the DCE, instructing the DTE that it
is in a "powered-up" state. No other meaning is implied.

SG Signal Ground is used to establish a common ground reference between the two
devices, enabling them to detect when 0's and l ’s are being received.

DCD Data Carrier Detected is a control signal from the DCE which tells the DTE
that a "carrier" signal has been established by the modem with another modem
(usually over a telephone line).

DTR Data Terminal Ready is a control signal sent by the DTE to the DCE indicating
that it is ready to operate. +5 volts indicates "ready" and -10 volts indicates "not

The SuperPET Serial Port 7

ready". The state of this line can be controlled from the "command register" of
the serial device.

Another commonly used connection is pin 22, called the Ring Indicator (RI). This is a
signal from a modem that is equipped with an auto-answer feature that indicates that a
call is coming in over the telephone line. The serial device of the SuperPET does not
support a status flag or bit to indicate this condition. Hence this feature is not
supported.

The following diagram illustrates the direction of flow of information.

SuperPET RS-232C
Connector
(DTE) (DCE)

1 (PG) -------------- ------------- 1 (PG)

2 (TxD) -------------- ------------- >

3 (RxD) <-------------

4 (RTS) -------------- -------------->

5 (CTS) <-------------

6 (DSR) <-------------

7 (SG) -------------- ------------- 7 (SG)

8 (DCD) <

20 (DTR) ------------- ------------- >

Data Direction

3 Mapping Between RS-232C and TTL Voltages

The previous section described voltage levels at the pins of the connector. These are
RS-232C voltages and are converted to TTL (Transistor - Transistor Logic) voltages in
the circuitry of the SuperPET.

A pair of chips, 1488 (designated U39 on the SuperPET Model 2 circuit board) and
1499 (U38) perform this conversion. The following chart illustrates the correspondence
between RS-232C voltages and TTL voltages.

RS-232C
Voltages

TTL
Voltages

TTL
Level

+5 (+3,+30) +0 (+0,+2) low

-10 (-3,-30) +5 (+2.5,+5) high

The SuperPET Serial Port 8

The figures inside parenthesis indicate acceptable ranges. For example, a TTL voltage in
the range (+0,+2) is nominally +0 or "low", whereas a TTL voltage in the range (+2.5,+5)
is nominally +5 or "high". The RS-232C voltages (+5 and -10), quoted above, are for
illustrative purposes only. As the diagram shows, the range for acceptable positive and
negative RS-232C voltages is quite wide.

Later on in this document, you will see references to "low" and "high". It will help to
keep in mind that these are references to TTL voltage levels. This chart will enable you
to determine what RS-232C voltage you should expect to see on a particular pin for a
"low" or a "high" condition.

4 Connecting the Serial Port to A Modem

4.1 Full Connection

Some DTEs require only connections to TxD, RxD, and the ground pins. The
SuperPET serial port, however, requires signals at all nine pin connections. You should
try to obtain a cable with at least nine lines. When the available cable has less than 9
lines, all is not lost. The next section describes what to do when you cannot connect all
9 lines.

The wiring for all 9 lines is shown as follows:

SuperPET RS-232C Modem
Connector Connector
(DTE) (DCE)

1 (PG) ------------- 1 (PG)

2 (TxD) 2 (TxD)

3 (RxD) 3 (RxD)

4 (RTS) 4 (RTS)

5 (CTS) 5 (CTS)

6 (DSR) 6 (DSR)

7 (SG) 7 (SG)

8 (DCD) 8 (DCD)

20 (DTR) 20 (DTR)

The documentation for your modem should describe the pin arrangement of the
modem. Generally the connection is "straight-through", that is, pin 1 of the modem is
connected to pin 1 of the serial port, pin 2 is connected to pin 2, pin 3 is connected to
pin 3, etc.

The SuperPET Serial Port 9

4.2 Partial Connection

As we said above, the SuperPET serial port requires signals at all nine pin connections.
To satisfy this requirement, when only lines 1, 2, 3, and 7 are delivered to the serial
port, the pins can be connected as follows:

SuperPET RS-232C Modem
Connector Connector
(DTE) (DTE)

1 (PG) -------------- 1 (PG)

2 (TxD) 2 (TxD)

3 (RxD) 3 (RxD)

- 4 (RTS)

-> 5 (CTS)

-> 6 (DSR)

7 (SG) 7 (SG)

-> 8 (DCD)

- 20 (DTR)

In the RS-232C port of the SuperPET, the Clear To Send (CTS) line must be at the
right voltage level for the transmitter (serial port) to work. The CTS input line is used
to control the transmitter operation. The enable state is with CTS low (TTL +0 volts).
The transmitter is automatically disabled if CTS is high (TTL +5 volts). If the CTS line is
not provided from the DCE, the correct level is achieved by connecting the Request To
Send (RTS) directly to CTS; thereby, the signal going out to pin 4 goes directly back into
pin 5 indicating that it is "clear to send".

Similarly, most software that runs on the SuperPET would expect to receive the
signals Data Set Ready (DSR) and Data Carrier Detect (DCD) (this is illustrated later on
in a programming example). Again, if there are no lines coming from the DCE cable for
these two signals, the correct voltage is achieved by connecting DSR and DCD (pins 6
and 8) directly to Data Terminal Ready (DTR, pin 20). When the SuperPET indicates
DTR on pin 20, this signal feeds pins 6 and 8 of the serial port, thus returning DSR and
DCD respectively.

You should note that the above arrangement results in the loss of a certain amount
of "protocol" information. This step should only be taken when you are sure that the
DCE does not need to know the status of Request To Send (RTS) and Data Terminal
Ready (DTR). If you are uncertain then you should fully connect all the lines as shown
in the previous section.

The SuperPET Serial Port 10

5 Connecting the Serial Port to A Non-M odem Device

The serial port of the SuperPET may be connected to a device other than a modem,
for example, a printer or another computer. The connection in such case may be less
than straight-forward. Generally, the cabling arrangement must involve the crossing of
pin 2 of the DCE to pin 3 of the DTE and pin 3 of the DCE to pin 2 of the DTE. In other
words, the SuperPET's receive line is connected the DCE's transmit line and the
SuperPET's transmit line is connected to the DCE's receive line. This kind of cabling is
often called a "null modem". A "real" modem provides the cross-connection of send and
receive between itself and another modem.

5.1 Connecting to a Serial Printer

A printer may not have a transmission capability and so this line need not be
connected. Those printers that support the XON/XOFF synchronization protocol
transmit as well as receive data and the line must be connected in order for this
protocol to work.

Note:
The SuperPET's "serial" input/output routines do not support the XON/XOFF
protocol. You must provide your own support in your application program.

The best way to determine how the cabling should be done is to consult the
manufacturer's documentation of the "pinout" of the device's "serial" port. One device
with which we have had experience had all the appropriate connections made internally.
The connection in this case was identical to that of connecting to a modem. This was
not what we expected and, as a result, things did not work. A thorough reading of the
documentation solved the mystery.

5.2 Connecting to a Host Computer

Connection to a host computer system can be even more complex, usually because of
the length of wire involved and the fact that it terminates somewhere inside the host
computer. In general, the best policy is to seek help from the host computer's system-
support personnel.

When connecting to a host computer system consider the following. If you can
connect the cable to a regular ASCII terminal and it works then you should have few
problems connecting to the SuperPET. If the cable ends in the wrong type of connector
(i.e., a female connector) then you must either replace the connector or add an adapter.
If you replace the connector, jot down on a piece of paper the configuration of the
wires. If you fail to keep track of which wire went to which pin, you may spend several
frustrating hours trying to make the right connections. If you add an adapter, don't cross
any of the wires (they are already crossed somewhere along the line).

If the cable works with an ASCII terminal but not the SuperPET consider that the
SuperPET requires more connections than the 3 or 4 that you can usually "get away
with" on an ASCII terminal.

To sum up, the most common misunderstanding that people seem to have is that the
SuperPET is somehow "different" from a terminal. Many terminal manufacturers have
already "hot-wired" pins 4, 5, 6, 8 and 20 inside the terminal. Quite likely the pins in

The SuperPET Serial Port 11

these terminals can be reenabled by removing or adding certain "jumper" wires. The
SuperPET arrives without such hot wiring because the serial port was intended to be
connected to devices other than host computers.

5.3 Partial Connection

The following illustrates a common way to wire the connector and cable.

SuperPET RS-232C Printer/Host Computer
Connector Connector
(DTE) (DCE)

1

2

3

---------- 4
I
------> 5

-------- > 6
I
I 7
I
|-------- > 8
I
------- 20 (DTR)

In the RS-232C port of the SuperPET, the Clear To Send (CTS) line must be at the
right voltage level for the transmitter (serial port) to work. The CTS input line is used
to control the transmitter operation. The enable state is with CTS low (TTL +0 volts).
The transmitter is automatically disabled if CTS is high (TTL +5 volts). If the CTS line is
not provided from the DCE, the correct level is achieved by connecting the Request To
Send (RTS) directly to CTS; thereby, the signal going out to pin 4 goes directly back into
pin 5 indicating that it is "clear to send".

Similarly, most software that runs on the SuperPET would expect to receive the
signals Data Set Ready (DSR) and Data Carrier Detect (DCD) (this is illustrated later on
in a programming example). Again, if there are no lines coming from the DCE cable for
these two signals, the correct voltage is achieved by connecting DSR and DCD (pins 6
and 8) directly to Data Terminal Ready (DTR, pin 20). When the SuperPET indicates
DTR on pin 20, this signal feeds pins 6 and 8 of the serial port, thus returning DSR and
DCD respectively.

You should note that the above arrangement results in the loss of a certain amount
of "protocol" information. This step should only be taken when you are sure that the
DCE does not need to know the status of Request To Send (RTS) and Data Terminal
Ready (DTR). If you are uncertain then you should fully connect all the lines as
described in the manufacturer's documentation.

(PG) ■

(TxD) •

(RxD) -

(RTS)

(CTS)

(DSR)

(SG) ■

(DCD)

X

1 (PG)

2 (TxD)

3 (RxD)

7 (SG)

The SuperPET Serial Port 12

Quite often serial printers use a "line" synchronization protocol, involving one or all
of Clear to Send (CTS), Data Set Ready (DSR), or Data Terminal Ready (DTR). The
"hand-shaking" protocol used by a printer should be described in the manufacturer's
documentation. The primary purpose of the protocol is to avoid "overrunning" the printer
(i.e., sending it data faster than it can print it). Without the appropriate connections,
this protocol cannot be implemented.

Note:
The SuperPET's "serial" input/output routines do not support any line protocol.
You must provide your own support in your application program.

6 The SuperPET Serial Device

The SuperPET is equipped with a chip that makes possible serial communications
with another device that possesses a serial port. The serial communications device on
the SuperPET is called an "Asynchronous Communication Interface Adapter"
(abbreviated ACIA). The ACIA in use in the SuperPET is the 6551 which is produced by
several chip manufacturers (e.g., Synertek). The 6551 is designated U40 on the SuperPET
Model 2 circuit board. The chip manufacturers produce documentation for their devices
in the form of "data sheets".

Much of the information presented here was distilled from Synertek's data sheet for
the 6551. Here are some of the characteristics of the device.

• On-chip baud rate generator: 15 programmable baud rates derived from a standard
1.8432 MHz external crystal (50 to 19,200 baud).

• Programmable interrupt and status register to simplify software design.

• Single +5 volt power supply.

• Serial echo mode.

• False start bit detection.

• 8-bit bi-directional data bus for direct communication with the microprocessor.

• External I6x clock input for non-standard baud rates (up to 125K baud).

• Programmable: word lengths; number of stop bits; and parity bit generation and
detection.

• Data set and modem control signals provided.

• Parity: (odd, even, none, mark, space).

• Full-duplex or half-duplex operation.

• 5, 6, 7, 8 and 9 bit transmission.

A good deal of information is provided on the electrical characteristics, operating
temperatures, and timings of the chip. The data sheet also meticulously describes all

The SuperPET Serial Port 13

the input/output lines to the chip, its registers, and various states. Very little
information is provided on the proper way to program the chip. Much of that is
discovered through trial and error.

The ACIA has 4 8-bit registers and, on the SuperPET, these are located in the
address range EFFO (decimal 61424) through EFF3 (decimal 61427). The registers are
described as follows:

6.1 Data Register (EFFO)

Incoming data from the DCE is stored in the Data Register. The bits are ordered
from most significant (bit number 7) to least significant (bit number 0). For example, the
ASCH letter "A" is 01000001 in binary or 65 in decimal. The left-most bit is the most
significant bit (MSB) and the right-most bit is the least significant bit (LSB).

; ACIA Data Register

• 7 6 5 4 3 2 1 0

; I MSB I I | | | | I LSB I
; I o I I 1 0 | o | o l o 1 0 I I I
•

; The decimal value 65 (ASCII "A") is illustrated.

Up to 8 bits of data may be received and it is stored "right justfied" in the data register.
Received data may simply be read ("peeked") from this register. Note that any parity
information is stripped from the data before placing it in the data register.

Similarly, up to 8 bits of data (a byte) may be transmitted to the DCE by storing
("poking") the data into this register. Note that the device takes care of adding any
parity information to the data that is transmitted to the DCE.

The number of data bits sent or received is governed by the choice of "word length"
(see description of the Control Register).

Data is sent and received 1 bit at a time, least significant bit first. The rate of
transmission is governed by the BAUD rate. The rate of reception may be governed by
the BAUD rate or by an externally generated receiver clock (see description of the
Control Register).

6.2 Status Register (EFF1)

The Status Register is used to indicate to the SuperPET the status of various 6551
functions. It is a read-only register (i.e., you cannot write new data into it). The status
bits of this register are described below. The INT (interrupt) flag is cleared whenever
the status register is read. The status of DSR (pin 6) and DCD (pin 8) on the serial port
can be determined by examining the appropriate bits of this register.

The SuperPET Serial Port 14

Flags for ACIA Status Register

7 6 5 4 3 2 1 0

I IRQ I DSR I DCD I TDRE I RDRF I OVRN I FE I PE I

PARITY equ $01; Parity error (l=Error/0=No Error)
FRAMING equ $02; Framing error (l=Error/0=No Error)
OVERRUN equ $04; Overrun error (l=Error/0=No Error)
RDRF equ $08; Receiver data reg. full (l=Full/0=Not Full)
TDRE equ $10; Transmit data reg. empty (l=Empty/0=Not Empty)
DCND equ $20; Data carrier detected (l=Not Detect/0=Detect)
DSNR equ $40; Data set ready (l=Not Ready/0=Ready)
INT equ $80; Interrupt occurred (l=Interrupt/0=No Interrupt)

Note that when the "Data Set Ready" status is "Ready", the DSR status bit is 0.
When it is "Not Ready", it is 1. What is happening at the serial port connector? A
positive RS-232C voltage on the DSR pin is converted to a TTL +0 volts or "low" and is
reflected in the status register as a 0. A negative RS-232C voltage is converted to a
TTL +5 volts or "high" and is reflected in the status register as a 1.

The same is true of "Data Carrier Detected". When a carrier signal is "Detected",
the DCD status bit is 0. When it is "Not Detected", it is 1.

You can use the SuperPET monitor to display the contents of the ACIA registers
("d effO"). Without a connector present in the serial port, the status of bits 5 and 6 (DCD
and DSR respectively) will be 1. When a connector is present and both DCD and DSR are
asserted (i.e., a positive RS-232C voltage is present), the status should be 0.

Earlier, we described one way of ensuring that DCD and DSR will always be asserted.
That was with the "hot-wired" connector.

Let us consider what should happen when a modem is fully connected to the serial
port. When the modem is turned on, the DSR status bit should go from 1 to 0. When a
telephone call is made and a carrier signal (a high-pitched tone) is obtained, the DCD
status bit should go from 1 to 0.

6.3 Command Register (EFF2)

The Command Register is used to control specific transmit/receive functions. It is a
read/write register. Parity control is included in this register. The bits of this register
are described below. Note that bits 2 and 3 of this register are used to govern interrupts
resulting from transmission of data as well as the state of Request to Send (RTS). RTS
should be set "low" in order to produce +5 volts on the RTS pin (the desired state).

The SuperPET Serial Port

Flags for ACIA Command Register

7 6 5 4 3 2 1 0

I PARITY CHECK I NRML/I TRANSMITTER IRX INTI DTR |
I CONTROLS I ECHO I CONTROLS I E/D I E/D I

DTRE equ $01; Enable receiver / transmitter
; 0 = Disable Receiver/Transmitter / ___ \ high
; 1 = Enable Receiver/Transmitter \ DTR / low

Receiver interrupt disableRID
RIE

TIE
TID
TBREAK

equ $02;
equ $FD; Receiver interrupt enable mask (complement of RID)

0 = IRQ Interrupt Enabled from bit 0 of Status Reg
1 = IRQ Interrupt Disabled

equ $04; Transmitter interrupt enable
equ $08; Transmitter interrupt disable
equ $0C; Transmit Break

BIT | TRANSMIT
3 2 I INTERRUPT

OTHER

+-
RTS LEVEL I

-----+
0 0 I Disabled I High
0 1 I Enabled I Low
1 0 I Disabled I Low
1 1 I Disabled I Low Transmit Break

ECHO
P_N0NE
P_0DD
P_EVEN
P MARK

+-
equ $10;
equ $00;
equ $20;
equ $60;
equ $A0;

Normal/Echo mode for receiver (0=N0RMAL/1=ECH0)

P_SPACE equ $E0;
+----------+-

No parity
Odd parity
Even parity
Mark parity
Space parity

(— Ox xxxx)
(OOlx xxxx)
(Ollx xxxx)
(101x xxxx)
(lllx xxxx)

I BIT I
17 6 5 1
+----------+-

Operation

I - - 0 I
I I
I 0 0 1 |
I 0 1 1 I
I 1 0 1 I
I 1 1 1 I
+----------+■

Parity disabled - No parity bit generated;
No parity bit received
Odd parity Receiver and Transmitter
Even parity Receiver and Transmitter
Mark parity bit x'mitted; no rx parity check
Space parity bit x'mitted; no rx parity check

The SuperPET Serial Port 16

6.4 Control Register (EFF3)

The Control Register is used to select the desired mode for the 6551. The word length,
number of stop bits, and clock controls are all determined by the Control Register. The
bits of this register are described below.

3
; Flags for ACIA Control Register

* 7 6 5 4 3 2 1 0

; | STOP I WORD IRX-CLK! BAUD RATE
; I BITS I LENGTH I SRC I GENERATOR

SP 0 equ $00 16x External Clock (xxxx 0000
SP 50 equ $01 50 Baud (xxxx 0001
SP 75 equ $02 75 Baud (xxxx 0010
SP 110 equ $03 109.92 Baud (xxxx 0011
SP 135 equ $04 134.58 Baud (xxxx 0100
SP 150 equ $05 150 Baud (xxxx 0101
SP 300 equ $06 300 Baud (xxxx 0110
SP 600 equ $07 600 Baud (xxxx 0111
SP 1200 equ $08 1200 Baud (xxxx 1000
SP 1800 equ $09 1800 Baud (xxxx 1001
SP 2400 equ $0A 2400 Baud (xxxx 1010
SP 3600 equ $0B 3600 Baud (xxxx 1011
SP 4800 equ $0C 4800 Baud (xxxx 1100
SP 7200 equ $0D 7200 Baud (xxxx 1101
SP 9600 equ $0E 9600 Baud (xxxx 1110
SP 19200 equ $0F 19200 Baud (xxxx 1111
EXT equ $00 External Receiver Clk (xxxO xxxx
BRD equ $10 Baud Rate Generator (xxxl xxxx
WORD 8 equ $00 Data Word Length 8 (x00x xxxx
WORD 7 equ $20 Data Word Length 7 (xOlx xxxx
WORD 6 equ $40 Data Word Length 6 (xlOx xxxx
WORD 5 equ $60 Data Word Length 5 (xllx xxxx
STOP 1 equ $00 1 Stop Bit (Oxxx xxxx
STOP 2 equ $80 2 Stop Bits (lxxx xxxx

1 Stop Bit if Word Length = 8 Bits
and Parity

1 & 1/2 Stop Bits if Word Length =
5 Bits and No Parity

6.5 Register Offsets

From an assembly language programming point of view, it is useful to describe the
registers of the ACIA symbolically. Below, we describe them in terms of offsets from
the starting address of the 4 ACIA registers.

The SuperPET Serial Port 17

Offsets to ACIA Registers
•

I OR equ 0 ; ACIA Input/Output Data Register
STATR equ 1 ; ACIA Status Register
CMDR equ 2 ; ACIA Command Register
CNTLR equ 3 ; ACIA Control Register

6.6 Selecting Parity, Word Length, and Stop Bits

You must select the parity, word length and number of stop bits to match what the
DCE expects. When a packet of data is sent to or received from the DCE it is enclosed
by a ’’start" bit, an optional parity bit and 1 or 2 "stop" bits.

A start bit tells the receiver that a character is about to begin. The stop bits tell the
receiver that the entire character has been transmitted. The start and stop bits serve
the same function as blank spaces between printed words.

Actually, the stop bits perform two functions. First, it returns the line to a state
wherein the next start bit can be recognized and, second, it allows the receiver time to
prepare for the next character. It is the transition from stop to start bit that causes the
receiver to start processing the incoming stream of bits.

The term "asynchronous" is used to describe this method for data transmission. For
example, if you were communicating with a host computer using the SuperPET as a
terminal, the time between characters sent to the host varies with the rate at which you
type. Characters arrive at the host computer "asynchronously".

Data Packet
Optn'l Optn'l

Start <— Up to 8 Data Bits — > Parity Stop Stop
Bit Bit Bit 1 Bit 2

+-------- +-------- +-------- +-------- +.......... +---------+---------+-------- +
1 0 ---1 0 / 1 1 0 / 1 1 0 / 1 1 1 0 / 1 1 1 I I |
+----- +------+------+------+..... +------+------+------+

The choice of word length governs how many data bits will be sent or received. The
minimum is 5 and the maximum is 8. The least significant bits of the Data Register are
sent whenever the word length is less than 8. As the description of the ACIA Control
Register says, only 1 stop bit is added if the selected word length is 8.

Let's consider what data is sent to the DCE when even parity, a 7-bit word length,
and 1 stop bit is selected. The start bit is sent first. Parity is calculated for the 7 least
significant bits in the data register such that the sum of the data bits plus the parity bit
is even. For example, if the data bits are 1000001 then the parity bit will be 0 since 1 +
0 + 0 + 0 + 0 + 0 + l + 0 = 2. Thus, starting with the least significant bit, 7 data bits are
sent and then a 0 parity bit. The single stop bit is sent last. This is a total of 10 bits.

A very common selection for serial printers is even parity, a word length of 7, and 1
stop bit. Another is no parity, a word length of 8, and 1 stop bit. In both cases, 10 bits of

The SuperPET Serial Port 18

information are transmitted. If the selected BAUD rate (or number of bits/second) was
300 then the character transmission rate would be 300 divided by 10 or 30 CPS
(characters per second).

You may now understand what "NO", "EVEN" and "ODD" parity means but what
about "SPACE" and "MARK" parity? The following table should summarize what all of
these mean.

Parity Meaning

No
Odd
Even
Mark
Space

No parity bit is generated
Sum of parity + data bits is odd
Sum of parity + data bits is even
Parity bit is always 1
Parity bit is always 0

Question:
What is the difference between "no parity" with a word length of 8 and "space
parity" with a word length of 7 when the most significant data bit (of 8 bits of
data) is always 0?

Answer:
None!

It is very important that you establish the correct settings for parity, word length
and number of stop bits. Of course, the correct BAUD rate is important too. The
manufacturer's documentation for your modem, printer, etc. should be consulted to
determine what these parameters should be.

7 Summary

Having now examined the registers of the serial port in some detail, the following
points should be noted.

(1) The CTS signal must be high in order for the ACIA to operate.

(Z) DSR (pin 6) and DCD (pin 8) are inputs to the serial device.

(3) Both DSR and DCD can be used to provide status information on the device
with which we are communicating. For example, we could choose not to
transmit data to the DCE if either one or both of the status flags "DSR and
DCD are not 0. Typically, a serial device handler or "driver" will do this. This
is why we recommended "hot wiring" the DSR and DCD pins to the DTR pin
whenever these two signals were not provided by the DCE.

(4) By convention, DSR and DCD were defined to mean certain things. The
programmer, however, could choose to assign different meanings to these pins.
For example, the DCE's Data Terminal Ready (DTR) status may alternately
change between high and low to signal a "Ready" or "Not Ready" status. We
could hook up the DCE's pin Z0 (DTR) to the DTE's pin 6 (DSR) and then check
the status of DSR to determine if we should transmit data to the DCE.

The SuperPET Serial Port 19

(5) You will probably be confused by the terminology "high" and "low" when
applied to the various signals. For example, the receiver / transmitter is
enabled setting bit 0 in the "Command Register" to 1. This is noted above as
setting DTR low. If you enable DTR and use a volt meter to check the DTR
pin, you'll see that it is at +5 volts (or some appropriate positive voltage).
Remember that this RS-232C voltage corresponds to a TTL voltage of +0 volts
which is "low".

We conclude this description of the serial port with two programming examples. The
second example was arrived at after many months of experimentation with the ACIA.

Note:
An appendix at the end of this document lists some additional references which
you may find interesting and useful.

If you have any suggestions for improving this document, please write to
WATCOM at the address shown on the title page.

Appendix A

Simple Programming Example Using BASIC

We will demonstrate how to program the serial device using BASIC as an example.
The following excerpts are taking from a BASIC program which is used to log records
from a telephone switchboard system which is equipped with a serial port. The
switchboard or DCE obeys the Data Terminal Ready (DTR) protocol. It will transmit a
record of information only when DTR is enabled. The serial port settings for
communicating with this device are a BAUD rate of 2400, a word length of 7, 1 stop bit,
and EVEN parity.

250 acia%=hex("effO")
260 ! stop=l, wrdlen=7, brd, spd=2400
270 poke aci a%+3,hex("00")+hex("20")+hex("10")+hex("0A")
280 ! parity=even, tx int disable, rx int disable, DTR enable
290 ENABLE%=hex("60")+hex("08")+hex("02")+hex("01")
300 ! parity=even, tx int disable, rx int disable, DTR disable
310 DISABLE?o=hex("60")+hex("08")+hex("02")+hex("00")
320 open #3,"serial", input

At this point the number of stop bits, word length, and BAUD rate have been
established. Two variables, ENABLE% and DISABLE% will be used to control the Data
Terminal Ready status as well as the parity setting. The "serial” device has been opened
for reading of records.

The next program fragment shows how the arrival of records from the serial port are
controlled.

480 loop
490 poke acia%+2,ENABLED
500 1 input #3,msg$
510 poke acia%+2,DISABLE%
520 print msg$
530 endloop

For each record, DTR is first enabled, a record is read (the record is terminated upon
reception of ASCII CR or carriage return), and then DTR is disabled. This allows the
program to continue processing the record just received without having to worry about
the untimely arrival of a new record. Note that once the DCE has started to transmit a
stream of data, the BASIC "linput" routine must be ready to accept and store each data
byte elsewhere in memory. Failure to do so will result in lost data. The DCE does check
to see whether anyone on the other end of the line is picking up the incoming data. If
the next data byte is stored overtop of the data byte which is already in the Data
Register without it having been read then we call this an "overrun" condition.

[A] Simple Programming Example Using BASIC 21

In this example, the processing of the record involves printing it to the screen. The
program from which this example was adapated actually performed quite a bit more
processing.

Appendix B

Transfering Data Between Two Computers

In this section, we will describe how to send and receive files of textual data
between two computers. Again, we will use BASIC to illustrate how this may be done.

The various implementations of our software treat the serial port as a file with the
special name "serial". Some knowledge of the interaction of BASIC’s input/output
routines with the serial port may aid in understanding how a program should deal with
this device. Two example programs show a simple means of text file transfer. The first
program is used to "send" files, over the serial port, to another computer. The second
program is used to "receive" a file that is being "sent" by the first program.

1 ! File Transmission
2 on ioerr ignore
3 on eof ignore
4 open #3,"serial11 ,inout
5 1 input "File to send? ",file$
6 open #4,file$,input
7 if iostatus <> 0
8 print "No such file"
9 else
10 linput #3,rply$
11 loop
12 linput #4,rec$
13 if iostatus <> 0 then quit
14 print #3,rec$
15 linput #3,rply$
16 if rply$(l:l)=chr$(10) then rply$(l:1)=""
17 if rply$ <> "ok" then quit
18 endloop
19 close #4
20 endif
21 print #3,"<eof>"
22 close #3
23 end

[B] Transfering Data Between Two Computers 23

1 ! File Reception
2 on ioerr ignore
3 open #3,"serial",inout
4 linput "File to get? ",file$
5 open #4,file$,output
6 if iostatus <> 0
7 print "Cannot open file"
8 else
9 print #3,"go"
10 loop
11 linput #3,rec$
12 if rec$(l:l)=chr$(10) then rec$(l:l)=""
13 if rec$ = "<eof>" then quit
14 print #4,rec$
15 if iostatus <> 0 then quit
16 print #3,"ok"
17 endloop
18 close #4
19 end if
20 close #3
21 end

The serial port is capable of both transmitting and receiving data. If we wish to both
send and receive records via this port then, in BASIC, we open the "serial” device for
input/output (e.g., OPEN #3,"serial",INOUT).

When you "print" a string to the device (e.g., PRINT #3,"go"), the characters 'g', 'o', a
carriage return (chr$(13)), and a line feed (chr$(10)) are transmitted over the serial port.
If the port is connected to the serial port of another computer then each of these
characters will appear as input data on the port of this computer. A program must be
executing on the receiving computer which "grabs" each character as it appears. If there
is no such program then the transmitted data will be lost. The rates of transmission and
reception must be identical, otherwise the transmitted data will not be "assembled"
correctly by the receiver. Therefore the BAUD rates of the two serial ports must be the
same. You must also ensure that the parity and word length settings for the two ports
are compatible.

If characters arrive at a rate faster than the receiving program can deal with them,
then some of the transmitted data will be lost. This is a problem that will likely show up
at high BAUD rates. It is a problem that cannot be easily dealt with from a BASIC
program since it typically executes much slower than is necessary to ensure no loss of
data.

In addition, even if data arrives at a slow enough rate, there may be points at which
we wish to do other processing. For example, we may wish to write a number of
characters, that have been received, to a file. It would be convenient if we could
somehow inform the program executing on the "sending" computer that it should wait a
while until we are ready for more data. This problem is fairly easy to solve in the
program. We can invent a simple protocol which will enable the two programs executing
on different computers to "talk" to each other. One program will "drive” the
conversation. In other words, one program will instruct the other program when to
"speak” (i.e., send a record) and when to "be silent" (i.e., wait until it is alright to send
the next record).

[B] Transfering Data Between Two Computers 24

This is very simple to do using BASIC input/output statements. If you examine the
"receive" program above, it may be apparent to you that it is the program that drives
the conversation. The "send" program will not "speak" until it is "spoken" to. Since the
two programs must synchronize their dialogue it is very important to know which of the
above programs must be "run" first. In this case it is the "send" program which must be
run first. If it is not executing at the time the "receive" program says "go" then it will
not "hear" the command to begin transmission.

If the programs are started in the wrong order, both will be "listening" and neither
will "say" anything. Clearly, it is desirable to avoid such a "standoff" or "deadlock"
situation. If this event occurs, both computers may no longer respond. If you type in the
above programs, save them first before you attempt to run them.

The two programs, shown above, were written to use the serial port of a
microcomputer. On large computers, this port may also be the one to which your
terminal/microcomputer is connected. If this is the case, the programs may require
some slight modification. The device name and dialogue synchronization may need to be
changed.

Appendix C

Complete Programming Example Using Assembly Language

The following assembly language routines provide the building blocks for writing a
device driver for the serial port. Each segment, shown below, contains the assembler
directive, "include <srdefn>". The contents of the file, "srdefn", are shown in the section
entitled "Serial Definitions".

These routines could, for example, be incorporated into an ASCII terminal emulator.
The last section illustrates how this may be done by providing an example of a simple
terminal emulator.

C.1 ACIA Handler Initialization

The routine "SRTie" expects to be passed the address of a buffer which is to be used
to store received characters. The length of this buffer is defined by "BFLEN" and, in
this example, is set to hexadecimal 78 (see Serial Definitions).

;include <srdefn>
9
; ACIA Handler Initialization
xref ACIAHOST

xdef SRTie
SRTie_ equ *

STD SRBuffer
STD BfSPtr
STD BfEPtr
CLR Key
CLR ReceiveLock
CLR SendLock
CLR SendlnProg

set buffer address
set buffer start
set buffer end
init peek/poke window
our XOFF/XON status is "ON"
host XOFF/XON status is "ON"
indicate o.k. to send next byte

[C] Complete Programming Example Using Assembly Language 26

CLR Break
CLR Breakllnderway
CLR OverrunError
CLR FramingError
CLR ParityError
CLR Count
LDB ACIAHOST_+CMDR
ANDB #$F0
ORB #(TID+DTRE)
STB ACIAHOST_+CMDR

RTS

end

no "BREAK" condition
break sequence not underway
no overrun errors
no framing errors
no parity errors
zero buffer fill count
get current command register setting
preserve some bits
set command register bits
set parity, tx interrupt disable,

rx interrupt enable
end of handler initialization

C.2 ACIA Interrupt Connection / Disconnection

The routines "SRConnect" and "SRDisconnect" are used to connect and disconnect
from the SuperPET interrupt handling system.

;include <srdefn>

IntVctr equ $0100
IRQ equ 8
*
; Connect to IRQ Interrupts

xref ConBInt

xdef SRConnect_
SRConnect_ equ *

LDD IntVctr+IRQ
STD IRQHndlr
LDD #IRQ
PSHS D
LDD #SRIRQHndlr
JSR ConBInt_
LEAS 2,S
RTS

get address of current IRQ handler
save old IRQ handler address
install new IRQ handler

pop parameter
return to caller

Disconnect from IRQ Interrupts

xdef SRDisconnect
SRDisconnect_ equ

LDD IRQHndlr
STD IntVctr+IRQ
CLRA
CLRB
STD IRQHndlr
RTS

get old IRQ handler address
restore IRQ handler address
indicate that we
have disconnected

return to caller

[C] Complete Programming Example Using Assembly Language 27

xref ACIAH0ST_
xref SRIntH

xdef SRIRQHndlr
SRIRQHndlr equ

LDA ACIAHOST_+STATR
i f It
JSR SRIntH

else
JMP [IRQHndlr]

end if
RTS

end

get host ACIA status
if INTERRUPT bit on then
- call our ACIA handler
el se
- call regular IRQ handler
endif
end of IRQ handler routine

C.3 ACIA Interrupt Handling

The routine "SRIntH" performs the handling of interrupts caused by the transmission
and reception of data from the serial port.

;include <srdefn>

; ACIA Interrupt Handler
; ACIA Status in A Accumulator

xref ACIAH0ST_
xref SRStuff

xdef SRIntH
SRIntH equ *

BITA #TDRE
if ne
TST SendlnProg
if ne

LDB ACIAHOST_+CMDR
ANDB #$F2
ORB #(TID+DTRE)

STB ACIAHOST_+CMDR
CLR SendlnProg

endif
endif
BITA #RDRF
if ne
JSR SRStuff
CLR BreakUnderway

endif
BITA #0VERRUN
if ne

INC OverrunError
endif

if tx data register empty
then
- if character was transmitted
- then
- - get command register
- - select bits to preserve
- - select tx interrupt disable and
- - enable receiver/transmitter
- - update command register
- - indicate o.k. to send next byte
- endif
endif
if rx data register full
then
- stuff character into ring buffer
- break sequence must be complete
endif
if overrun error
then
- tally another overrun error
endif

[C] Complete Programming Example Using Assembly Language 28

TST Breakllnderway
if eq
BITA IFRAMING
if ne

INC FramingError
INC Break
DEC Breakllnderway

endif
endif
BITA #PARITY
if ne

INC ParityError
endif
RTS

end

if no break sequence in progress
then
- if framing error
- then
- - tally another framing error
- - indicate "BREAK" condition
- - indicate break sequence underway
- endif
endif
if parity error then
then
- tally another parity error
endif
end of interrupt handler

C.4 Getting Received Data

The routine "SRGetChar" returns a byte from the reception buffer to the caller. If no
data are present in the buffer then a NULL character is returned (decimal value 0). The
data are returned in the "B" register, one at a time, in the same order as they were
received.

include <srdefn>

Get Next Byte From Ring Buffer

xref SRPutX

xdef SRGetChar_
SRGetChar_ equ *

CLRB
LDX BfSPtr
CMPX BfEPtr
if ne

LDD SRBuffer
ADDD #BFLEN
PSHS D
DEC Count
guess
TST TTSync
quif eq
TST ReceiveLock
quif eq
LDA Count
CMPA #BFLEN-BFL0W
quif gt
LDB #X0N
JSR SRPutX
CLR ReceiveLock

endguess

return NULL if buffer empty
get ring buffer start pointer
if ring buffer not empty
then
- calculate ring buffer
- end address
- save ring buffer end address
- reduce buffer use count
- guess that it's time to restart host
- - quit if we cannot synch, data reception

- - quit if we have not sent XOFF

- - get buffer use count
- - quit if buffer is not near empty

- - transmit XON character
- - to restart the host
- - indicate that we have sent XON
- endguess

[C] Complete Programming Example Using Assembly Language

LDB 0,X
LEAX 1,X
CMPX ,S
if eq

- get next byte
- increment start pointer
- if at end of ring buffer
- then
- - point at beginning of buffer
- endif
- update ring buffer start pointer
- pop ring buffer end address
endif
pass current byte through memory also
high byte of D gets 0
end of character get routine

LDX SRBuffer
endif
STX BfSPtr
LEAS 2,S

endif
STB Key
CLRA
RTS

end

C.5 Transm itting Data

The routine "SRPutChar" transmits a data byte out the serial port. The data byte
passed in the "B" register.

The routine "SRBreak" generates a ’’break" condition on the serial line.

;include <srdefn>
9

; ACIA Output Routine

xref ACIAH0ST_

xdef SRPutKey_
SRPutKey_ equ *

LDB Key ; load byte to transmit

xdef SRPutChar
SRPutChar_ equ *

loop
TST SendLock

until eq

loop (host synchronization)
- check XON/XOFF status
until not XOFF

[C] Complete Programming Example Using Assembly Language 30

xdef SRPutX
SRPutX equ *

loop
TST SendlnProg

until eq

PSHS A
loop

LDA ACIAHOST_+STATR
ANDA #DCND+DSNR

until eq

LDA ACIAH0ST_+CMDR
ANDA #$F2
ORA #(TIE+DTRE)

DEC SendlnProg
STB ACIAH0ST_+I0R
STA ACIAH0ST_+CMDR
PULS A
RTS

xdef SRBreak_
SRBreak_ equ *

LDA ACIAHOST_+CMDR
ANDA #$F2
ORA #(TBREAK+DTRE)

STA ACIAHOST +CMDR

LDX #0
loop

LEAX 1,X
until eq

ANDA #$F2
ORA #(TID+DTRE)

STA ACIAHOST_+CMDR
RTS

end

; special entry for XOFF/XON transmission

; loop
; - check status of last byte transmitted
; until last byte was transmitted

; save accumulator A
; loop
; - check for data carrier not detected
; - and data set not ready status
; until both status bits are zero
; (i.e., DSR + DCD)
; get current command register
; select bits to preserve
; select tx interrupt enable and
; enable receiver/transmitter
; indicate transmission started
; start data transmission out ACIA port
; update command register
; restore accumulator A
; end of output routine

get current command register
select bits to preserve
select transmit BREAK

and enable receiver/transmitter
update command register
delay long enough for host computer
to recognize a "break" condition
zero counter
loop
- increment counter
until zero again
and then turn "break" off
select bits to preserve
set transmitter interrupt

disable and DTR enable
update command register
end of serial break routine

C.6 Ring Buffer Handler

The routine "SRStuff” places received data into a "ring" buffer if there is room to do
so. This routine also handles host XON/XOFF synchronization, both for data reception
and transmission.

[C] Complete Programming Example Using Assembly Language

include <srdefn>

Stuff Received Byte into Ring Buffer If Room is Available

Note: This routine executes in "interrupts disabled" state

xref
xref

ACIAHOST
SRPutX

xdef SRStuff
SRStuff equ *

LDB ACIAH0ST_+I0R
guess

CMPB #X0N
quif ne
CLR SendLock

admit
CMPB #X0FF
quif ne
DEC SendLock

admit
TSTB
quif eq
CMPB #$7F
quif eq
LDX SRBuffer
LEAX BFLEN,X
PSHS X
LDY BfEPtr
LEAX 1,Y
CMPX ,S
if eq

LDX SRBuffer
endif

get data byte
guess : special char
- quit if CTRL/Q not received

- o.k. to transmit more characters
admit
- quit if CTRL/S not received

- stop transmission of characters
admit
- quit if NULL character received

- quit if DEL character received

- calculate ring buffer
end address

- save ring buffer end address
- get ring buffer end pointer
- increment it
- if at end of ring buffer
- then
- - point at beginning of buffer
- endif

[C] Complete Programming Example Using Assembly Language

LEAS 2,S
CMPX BfSPtr
if ne
STB 0,Y
LDB ACIAHOST_+CMDR
BITB #RID
if eq
STX BfEPtr
INC Count

endif
guess

TST TTSync
quif eq
TST ReceiveLock
quif ne
LDB Count
CMPB #BFLEN-BFHI
quif It
DEC ReceiveLock
CLI

LDB #X0FF
JSR SRPutX

endguess
endif

endguess
RTS

end

- pop ring buffer end address
- if ring buffer not full
- then
- - save received character
- - get command register
- - if receiver interrupt not disabled
- - (i.e. we really wanted this character)
- - - update ring buffer end pointer
- - - increment buffer use count
- - endif
- - guess that it's time to halt host
- - - quit if we cannot synchronize
- - - data reception
- - - quit if we already sent XOFF

- - - get buffer use count
- - - quit if buffer is not near full

- - - indicate that we have sent XOFF
- - - enable interrupts since
- - - we want to send
- - - transmit XOFF character
- - - to halt the host
- - endguess
- endif
endguess
end of ring buffer stuffer

C.7 Serial Definitions

The following set of '’equates" is used by all of the above routines,

opt nolist

Offsets to ACIA Registers

IOR equ 0 ; ACIA
STATR equ 1 ; ACIA
CMDR equ 2 ; ACIA
CNTLR equ 3 ; ACIA

C C] Complete Programming Example Using Assembly Language

Flags for ACIA Status Register

7 6 5 4 3 2 1 0

I IRQ I DSR I DCD I TDRE I RDRF I OVRN | FE I PE I

PARITY
FRAMING
OVERRUN
RDRF
TDRE
DCND
DSNR
INT

equ $01
equ $02
equ $04
equ $08
equ $10
equ $20
equ $40
equ $80

Parity error (l=Error/0=No Error)
Framing error (l=Error/0=No Error)
Overrun error (l=Error/0=No Error)
Receiver data reg. full (l=Full/0=Not Full)
Transmit data reg. empty (l=Empty/0=Not Empty)
Data carrier detected (l=Not Detect/0=Detect)
Data set ready (l=Not Ready/0=Ready)
Interrupt occurred (l=Interrupt/0=No Interrupt)

; Flags for ACIA Command Register

• 7 6 5 4 3 2 1 0

; I PARITY CHECK | NRML/I TRANSMITTER IRX INTI DTR I
; I CONTROLS I ECHO I CONTROLS I E/D I E/D I

3
DTRE equ $01; Enable receiver / transmitter
; 0 = Disable Receiver/Transmitter / __ \ high
; 1 = Enable Receiver/Transmitter \ DTR / low
RID equ $02; Receiver interrupt disable
RIE equ $FD; Receiver interrupt enable mask (complement of RID)
; 0 = IRQ Interrupt Enabled from bit 0 of Status Reg
; 1 = IRQ Interrupt Disabled
TIE equ $04; Transmitter interrupt enable
TID equ $08; Transmitter interrupt disable
TBREAK equ $0C; Transmit Break

; I BIT | TRANSMIT I | OTHER I
; 13 2 1 INTERRUPT I RTS LEVEL I I

; I 0 0 I Disabled I High I - I
; I 0 1 I Enabled I Low I - I
; j 1 0 I Disabled I Low I -
; I 1 1 I Disabled I Low I Transmit Break I

[C] Complete Programming Example Using Assembly Language

ECHO
P_N0NE
P_0DD
P_EVEN
P_MARK
P SPACE

equ $10; Normal/Echo mode for receiver (0=N0RMAL/1=ECH0)
equ $00; No parity (--Ox xxxx)
equ $20; Odd parity (OOlx xxxx)
equ $60; Even parity (Ollx xxxx)
equ $A0; Mark parity (101x xxxx)
equ $E0; Space parity (lllx xxxx)
h------- +-- +
I BIT I Operation I
17 6 5 1 I
h------- +-- +
I - - 0 I Parity disabled - No parity bit generated; I

I No parity bit received I
i 0 0 1 I Odd parity Receiver and Transmitter
I 0 1 1 I Even parity Receiver and Transmitter
I 1 0 1 I Mark parity bit x'mitted; no rx parity check I
I 1 1 1 I Space parity bit x'mitted; no rx parity checkl
-------+--- +

[C] Complete Programming Example Using Assembly Language

Flags for ACIA Control Register

7 6 5 4 3 2 1 0

I STOP I WORD IRX-CLKI BAUD RATE I
I BITS I LENGTH I SRC I GENERATOR I

; +---- --+--- ----- +------+------+— ---- +

SP 0 equ $00 16x External Clock (xxxx 0000)
SP 50 equ $01 50 Baud (xxxx 0001)
SP 75 equ $02 75 Baud (xxxx 0010)
SP 110 equ $03 109.92 Baud (xxxx 0011)
SP 135 equ $04 134.58 Baud (xxxx 0100)
SP 150 equ $05 150 Baud (xxxx 0101)
SP 300 equ $06 300 Baud (xxxx 0110)
SP 600 equ $07 600 Baud (xxxx 0111)
SP 1200 equ $08 1200 Baud (xxxx 1000)
SP 1800 equ $09 1800 Baud (xxxx 1001)
SP 2400 equ $0A 2400 Baud (xxxx 1010)
SP 3600 equ $0B 3600 Baud (xxxx 1011)
SP 4800 equ $0C 4800 Baud (xxxx 1100)
SP 7200 equ $0D 7200 Baud (xxxx 1101)
SP 9600 equ $0E 9600 Baud (xxxx 1110)
SP 19200 equ $0F 19200 Baud (xxxx 1111)
EXT equ $00 External Receiver Clk (xxxO xxxx)
BRD equ $10 Baud Rate Generator (xxxl xxxx)
WORD 8 equ $00 Data Word Length 8 (xOOx xxxx)
WORD 7 equ $20 Data Word Length 7 (xOlx xxxx)
WORD 6 equ $40 Data Word Length 6 (xlOx xxxx)
WORD 5 equ $60 Data Word Length 5 (xllx xxxx)
STOP 1 equ $00 1 Stop Bit (Oxxx xxxx)
STOP 2 equ $80 2 Stop Bits (lxxx xxxx)

1 Stop Bit if Word Length = 8 Bits
and Parity

1 & 1/2 Stop Bits if Word Length =
5 Bits and No Parity

[C] Complete Programming Example Using Assembly Language 36

9

; Zero Page Location For Serial I/O Variables

SRBuffer equ $00 V. . 1 o

t—
1

; $02-$03 reserved
OverrunError equ $04
FramingError equ $05
ParityError equ $06
Key equ $07
ReceiveLock equ $08
SendLock equ $09
; $0a-$0b reserved
BfSPtr equ $0c ; - $0d
BfEPtr equ $0e ; - $0f
Count equ $10
; $11-$12 reserved
; $13-$14 reserved
HostSync equ $15
TTSync equ $16
SendlnProg equ $17
Break equ $18
Breakllnderway equ $19
IRQHndlr equ $1A ; - $1B
; $1C-$1D reserved
; $1E-$1F reserved
9

XON equ $11 ; Ctrl q
XOFF equ $13 ; Ctrl s

BFLEN equ $78 ; buffer length
BFLOW equ 64 ; restart reception factor
BFHI equ 16 ; halt reception factor
9

opt list

C.8 A Simple Terminal Emulator

The following is a listing of a simple terminal emulation routine (see Note below). It
illustrates how the routines, shown above, may be incorporated into a terminal emulator.

[C] Complete Programming Example Using Assembly Language

include <srdefn>

Simple ASCII/APL Terminal Emulator

Special Features:
1. XON/XOFF support for transmission to host (HostSync)
2. XON/XOFF support for reception from host (TTSync)
3. Break generation using STOP key
4. Scroll control using Shift/Keypad 0 key
5. Emulation exit using Shift/Keypad 8 key
6. Character set (ASCII/APL) support

using Shift In (SI) / Shift Out (SO) characters
7. CTRL key support using RVS key and other key (@,A,B,...,_)

(keys must be pressed one after the other, not simultaneously)

Known Problems:
1. Wrap at column 80 may require host setup.
2. Holding down the SHIFT key generates continual interrupts

such that incoming characters may be lost.
3. The duration of the BREAK interval in SRBreak_ may need

to be increased for certain systems.

To link this emulator, create and use the following command file:
term
org $A00
include "disk/1.watlib.exp"
export ACIAH0ST_ = $EFF0
"emuterm.b09"
"srget. b09"
"srinth .b09"
"srirq.b09"
"srput.b09"
"srstuff.b09"
"srtie. b09"

xref Openf
xref FGetChar_
xref Closef
xref PutChar_
xref TBreak_
xref TSetChar_

xref SRTie_
xref SRConnect
xref SRDi sconnect
xref SRGetChar_
xref SRPutChar_
xref SRBreak

Echo equ $7f ; Use location $7f for Echo control
Service equ $32 ; System service code
Buffer_ equ $400 ; Buffer for storing up received characters
Screen equ $8000 ; Location of screen memory
SKD_ equ $10e ; Location of screen / keyboard descriptor

[C] Complete Programming Example Using Assembly Language 38

CURSOR
APLSET

KBDEL
KBESC
CTRL_G
CURUP
CR
CTRL_N
CTRL_0
CTRL_Q
CTRL_S
ESCAPE
RUBOUT
KBCTRL

PFKEY
KBEXIT
KBHOLD

ASCII
APL

xdef
EmuTerm

equ 20
offsets from SKD_
cursor : int

equ 26 aplset : bool

equ $04 Keyboard DEL
equ $06 Keyboard ESC
equ $07 ASCII Bell
equ $0b SuperPET Cursor Up
equ $0d Carriage Return
equ $0e ASCII Shift Out
equ $0f ASCII Shift In
equ $11 ASCII DC1 (XOn)
equ $13 ASCII DC3 (XOff)
equ $lb ASCII Escape
equ $7f ASCII Del (Rubout)
equ $ff Keyboard 0FF/RVS

equ $80 ; Function keypad
equ PFKEY + 8 ; Keypad 8 (shifted)
equ PFKEY + 10 ; Keypad 0 (shifted)

equ 1 ; ASCII character set selection
equ 2 ; APL character set selection

EmuTerm_
equ *

LDB #$00
STB Echo
LDB #$FF
STB HostSync
LDB #$FF
STB TTSync

CLRB
STB Hold
STB PrevKey

LDD #ReadMode
PSHS D
LDD #KeyBoard
JSR Openf
LEAS 2,S
STD KBIn
LDD #Buffer
JSR SRTie_
JSR SRConnect
LDB #CTRL_Q
JSR SRPutChar
loop
JSR TBreak_
TSTB

* Start of parameter section
A more sophisticated terminal emulator
would allow User setting of the following
FALSE value (patchable)
Disable local echoing of typed characters
TRUE value (patchable)
Recognize host XON/XOFF synchronization
TRUE value (patchable)
Perform terminal XON/XOFF synchronization

* end of parameter section
FALSE value
Scroll control is off
Last key typed is initialized NULL
Openf("KEYBOARD11, "R")
pointer to open mode string
push parameter 2
pointer to file name
open keyboard
pop parameter
save keyboard file pointer
get address of buffer
SRTie(Buffer)
SRConnectQ
SRPutChar(CTRL_Q)
transmit XON in case host is in XOFF state
loop (talk to host computer)
- check for STOP key
- if TBreak()

[C] Complete Programming Example Using Assembly Language 39

if ne
JSR SRBreak_
endif
LDD KBIn
JSR FGetChar
STB Key
CMPB #KBEXIT
quif eq
guess
CMPB #KBCTRL
quif ne
STB PrevKey
admit
CMPB IKBHOLD
quif ne
LDA #$FF
STA TTSync
COM Hold
admit
TSTB
quif eq
CLRA
STA Hold
BSR TranOut
TST Echo
if ne
BSR Local Echo
endif
STB PrevKey
JSR SRPutChar
endguess
TST Hold
if eq
loop
JSR SRGetChar_
TSTB
quif eq
BSR Local Echo
TST ReceiveLock
until eq
endif
endloop
LDB #CTRL_S
JSR SRPutChar_

loop
JSR SRGetChar_
TSTB
quif eq
BSR LocalEcho
endloop
JSR SRDi sconnect
LDD KBIn
JSR Closef

- then
- - SRBreak()
- endif
- Key := FGetChar(KBIn)

- quit if Key = KBEXIT

- guess
- - quit if Key <> KBCTRL

- - remember CTRL toggle
- admit
- - quit if Key <> KBHOLD

- - TTSync := TRUE
- - Hold := ~ Hold
- admit
- - quit if Key = NULLCHAR

- - Hold := FALSE
- - translate key before sending to host
- - if local echoing
- - then
- - - Local Echo (Key)
- - endif
- - PrevKey := Key
- - SRPutChar(Key)
- endguess
- if ~ Hold
- then
- - loop
- - - SRGetCharQ
---- quit if Key = NULLCHAR

- - - echo received char on screen

- - until ~ ReceiveLock
- endif
endloop
transmit XOFF in case host has more for us
SRPutChar(CTRL_S)
get out those last few characters
loop
- SRGetCharQ
- quit if character = NULLCHAR

- echo received char on screen
endloop
SRDi sconnect()
get keyboard file pointer
Closef(KBIn)

[C] Complete Programming Example Using Assembly Language 40

CLR Servi ce
RTS

equ *
guess
CMPB #KBESC
quif ne
LDB #ESCAPE
admit
CMPB #KBDEL
quif ne
LDB #RUB0UT
admit
LDA PrevKey
CMPA #KBCTRL
quif ne
ANDB #$lf
endguess
RTS

10 equ *
PSHS B
CLRA
guess
CMPB ICR
quif ne
JSR PutChar
LDB #CURUP "
JSR PutChar_
admit
CMPB #CTRL_G
quif ne
BSR Beep_
admit
CMPB #CTRL_N
quif ne
LDB #APL
JSR TSetChar
admit
CMPB #CTRL_0
quif ne
LDB #ASCII
JSR TSetChar_
admit
guess
TST SKD +APLSET
quif eq "
CMPB # 1 F1
quif ne
LDX SKD_+CURSOR
LEAX Screen ,X
LDA ,X
CMPA # 1 a 1+$80
quif lo

; set exit code
; end of terminal emulation

guess
- quit if Key <> KBESC

- Key := ESCAPE
admit
- quit if Key <> KBDEL

- Key := RUBOUT
admit
- quit if PrevKey <> KBCTRL

- Key := Key & $lf
endguess
end of keyboard translation for output

save character
zero hi part of D
guess
- quit if Key <> CR

- PutChar(CR)
- PutChar (CURUP)
- counteract Linefeed
admit
- quit if Key <> CTRL_G

- ring the bell
admit
- quit if Key <> CTRL_N

- APL character set selected
admit
- quit if Key <> CTRL_0

- ASCII character set selected
admit
- guess APL character set &
- - quit if not APL character set

- - quit if not APL

- - get cursor offset
- - point at current character
- - get character already there
- - quit if character < APL A

C C] Complete Programming Example Using Assembly Language 41

CMPA # 1z 1+$80
quif hi
TFR A,B
endguess
CLRA
JSR PutChar_
endguess
PULS B
RTS

- - quit if character > APL Z

- - use reverse video character
- endguess
- zero hi part of D
- echo character on screen
endguess
restore Key
end of local echo routine

BEEP the SuperPET Buzzer
9

; Registers: A,B ([
9 X
9

Freq equ $E848
Wave equ $E84A
Music equ $E84B
9

xdef Beep_
Beep_ equ *

pshs X
LDB #16
STB Music
LDB #$0f
STB Wave
LDX
loop.

#3

LDB #55
BSR Play
LDB #60
BSR Play
LEAX -i,x
unti 1 eq
LDB #00
STB Music
puls
RTS

X

Play equ -k

STB Freq
LDD
loop

#0

ADDD #1
CMPD #$0BFF

until eq
RTS

preserved

; frequency
; waveform
; music on/off

save X reg
on=16
turn on the music
get waveform 00001111 off/off/off/off/on/on/on/on
and set it
set counter
loop
- get frequency
- and play it
- get frequency
- and play it
- bump counter
until count exhausted
off=00
turn off the music
restore X reg
return to caller

set frequency
set counter
loop
- increment
- check for duration
until duration over
end of play routine

KeyBoard fee
feb

"KEYBOARD"
0

ReadMode fee "R"

[C] Complete Programming Example Using Assembly Language 42

f cb 0

KBIn rmb 2
Hold rmb 1
PrevKey rmb 1

end

keyboard file pointer
hold screen (scroll/no scroll toggle)
previously typed key

Note:
A more sophisticated terminal emulator is available from WATCOM Products
Inc. For more information, write to:

WATCOM Products Inc.,
415 Phillip St.,
Waterloo, Ontario,
CANADA N2L 3X2

Appendix D

EIA RS-232C Pin Assignments

The following is a list of some of the 25 pins defined by the RS-232C standard.

Pin
No.

EIA
Desig.

CCITT
Desig.

Description Abbrev.

1 AA 101 Protective Ground PG
2 BA 103 Transmit Data TxD
3 BB 104 Receive Data RxD
4 CA 105 Request to Send RTS
5 CB 106 Clear to Send CTS
6 CC 107 Data Set Ready DSR
7 AB 102 Signal Ground SG
8 CF 109 Data Carrier Detect DCD
12 SCF 122 Secondary Data Carrier Detect SDCD
13 SCB 121 Secondary Clear to Send SCTS
14 SBA 118 Secondary Transmit Data STxD
15 DB 114 Serial Clock Transmit SCT
16 SBB 119 Secondary Receive Data SRxD
17 DD 115 Serial Clock Receive SCR
19 SCA 120 Secondary Request to Send SRTS
20 CD 108.2 Data Terminal Ready DTR
21 CG 110 Signal Quality Detect SQD
22 CE 125 Ring Indicator RI
23 CH 111 Data Rate Select (DTE source) DRS

Cl 112 Data Rate Select (DCE source)
24 DA 113 External Transmit Clock EXT

Note:
CCITT is another standards organization- the International Telegraph and
Telephone Consultative Committee (a unit of the International
Telecommunications Union). CCITT's standards are V.24/V.28 and are the
international counterpart of the U.S. Electronics Industries Association's
RS-232C standard.

Appendix E

Glossary

The following are a few of the glossary items published in the ’’Terminal and
Communications Handbook" published by Digital Equipment Corporation (see
References). The handbook contains several very informative chapters. Among them are
Chapter 10 - "Basic Concepts of Data Communication" and Chapter 19 -
"Communications Glossary".

asynchronous transmission Transmission in which time intervals between transmitted
characters may be of unequal length. Transmission is controlled by start and stop
elements at the beginning and end of each character. Also called start/stop
transmission.

BAUD A unit of signaling speed equal to the number of discrete condition or signal
events per second. In asynchronous transmission, the unit of signaling speed
corresponding to one unit interval per second. Baud is the same as "bits per second" only
if each signal event represents exactly one bit.

carrier A continuous frequency capable of being modulated or impressed with a signal.

CCITT Comite Consultatif Internationale de Telegraphie et Telephonie.

data communications equipm ent (DCE) The equipment that provides the functions
required to establish, maintain, and terminate a connection, the signal conversion and
coding required for communication between data terminal equipment and data circuits.
The data communication equipment may or may not be an integral part of a computer
(e.g., a modem). DCE has lately been enhanced to mean "data circuit-terminating
equipment", a more general term.

control procedure The means used to control the orderly communication of information
between stations on a data line. Also called: line discipline.

data terminal equipm ent (DTE) 1) The equipment comprising the data source, the data
sink, or both. 2) Equipment usually comprising the following functional units: control
logic, buffer store, and one or more input or output devices or computers. It may also
contain error control, synchronization, and station identification capability.

full duplex Simultaneous two-way independent transmission in both directions.

half duplex A circuit designed for transmission in each direction but not in both
directions simultaneously.

host com puter A computer attached to a network providing primarily services such as
computation, data base access, or special programs, or programming languages.

[E] Glossary 45

mark Presence of a signal. In telegraphy, mark represents the closed condition or
current flowing. Equivalent to a binary one condition.

modem (m odulator-dem odulator) A device that modulates signals transmitted over
communications circuits. Also called "data set".

m odulation The process by which some characteristic of a high frequency carrier signal
is varied in accordance with another, a lower frequency "information" signal. This
technique is used in modems to make business machine signals compatible with
communications facilities.

null modem A device which interfaces between a local peripheral that normally requires
a modem, and the computer near it that expects to drive a modem to interface to that
device.

protocol A formal set of conventions governing the format and relative timing of
message exchange between two communicating processes. See also: control procedure.

serial transmission A method of transmission in which each bit of information is sent
sequentially on a single channel rather than simultaneously as in parallel transmission.

start elem ent In start/stop transmission, the first element in each character, which
serves to prepare the receiving equipment for the reception and registration of the
character.

start/s top transmission Asynchronous transmission in which a group of code elements
corresponding to a character signal is preceded by a start element and is followed by a
stop element.

stop elem ent In start/stop transmission, the last element in each character, to which is
assigned a minimum duration, during which the receiving equipment is returned to its
rest condition in preparation for the reception of the next character.

Appendix F

References

The following references provide additional insight into serial communications.

[1] Asynchronous Communication Interface Adapter - SY6551, Synertek 1981-1982
Data Catalog, pp. 3-169 to 3-176, Synertek Incorporated, P.O. Box 552-MS/34,
Santa Clara, California, U.S.A. 95052.

[2] Terminals and Communications Handbook 1981-82, Digital Equipment
Corporation, New Products Marketing, PK3-1/M92, Maynard, Massachusetts,
U .S .A .10754.

[3] "The Lowly Modem", George M. Dick, Datamation, Vol. 23, No. 3 (March 1977),
pp. 69-73.

[4] "Line Control Procedures", James P. Gray, Proceedings of the IEEE, Vol. 60, No.
11 (Nov. 1972), pp. 1301-1312.

Articles [3] and [4] are reprinted in "Computer Networks: A Tutorial", Abrams, Blanc
and Cotton, Third Edition - 1980, IEEE Catalog No. EH0162-8 or IEEE Computer Society
Catalog No. 297. Copies may be obtained from

Computer Society Publications Office,
5855 Naples Plaza, Suite 301,
Long Beach, California, U.S.A. 90803

or

IEEE Service Centre,
445 Hoes Lane,
Piscataway, New Jersey, U.S.A. 08865

WATCOM
The WATCOM Group Inc.
WATCOM Products Inc.
WATCOM Systems Inc.
WATCOM Seminars
WATCOM Publications Ltd.

415 Phillip Street
Waterloo, Ontario, Canada
N2L 3X2
(519) 886-3700
Telex 06-955 458

