b

-

Skyles

Flectric MACROTEA

Works

9330

9349

9350
B354-ASA0 - ©36BSADJ
B356-48 B37@
@357-48 9389
P358-48 9330
B353-48 9400
B35A-4CBSEG 8410

9420
B430
D440
8450

B3SD-ADB402 B46BCSTART
@360-C301 8470
8362-DPOE 0480
B364-ADD302 B490
@367-C93B 0500
8363-DEB7 9518
@3EB-205493 95208
@3BE-EA 8530
B36F -4CS9048 0540
@550

9372-205403 BOSBBFINISH
B375-EA 570
@376-4C7EEG 0S80
8379-EA 8590
837A-EA D600
9610

; STACK ADJUSTHMENTS

LDA
PHA
PHA
PHA

PHA
JMP

0

$EB8S

;LOOK AT KEYRBOARD IMAGES AMD SEE

i IF
LDA
cMP
BNE
LDA
CMP
BNE
JSR
NOP
JMP
JSR
NOP
JHP
NOP
NOP
.EN

LABEL FILE: [- = EXTERNAL 1

, RESTART=48390
SADJI=B8354

SHIFT AND PI ARE BOTH DOWN

$0204 ; CHECK SHIFT
#01

FINISH

$3203 $CHECK FOR PI
#59

FINISH

SADJ

RESTART ;GO DO IT!!
SADJ s REQUIRED MUMBO

; JUMBO TO GET BACK TO MORMAL
SEGYE ; OPERATION

TURMON=833R TURNOFF=8347
CSTART=B35D FINISH=B37Z2

USER’S MANUAL

231E SouthWhisman Road MountainView,CA 94041 (415) 965-1735

Copyright @ 1980,1981,1982 by Skyles Electric Works
231-E So. Whisman Rd.
Mountain View, CA 94041
(415) 965 1735

This manual was originally prepared by Gregory Yob.
This manual was updated by Jim Berkey.

PAGE 1

SUMMARIES

To Begin With

We are pleased that you have acquired the Skyles MACROTEA and
are sure you will find the MACROTEA to be a handy and useful tool for
your PET. Please spend some time looking at this manual to get a "feel"
for the MACROTEA before commencing your first project.

ORGANIZATION OF THIS MANUAL

Most manuals are arranged in a literary order - starting with
simple examples, and finishing with several appendices which contain
the gory details. Though this is fun to read, it isn't very convenient
to flip through a lot of pages to understand what !09 AT 257 means.

With this in mind, the most accessed parts are put first and
the details are put second. When you use this manual, the summaries
will usually be sufficient for your needs, and only now and then will
you need to read all of the details.

Here is the rough outline:

SUMMARIES

Error Numbers

& So Forth (Defaults, etc.)

Alphabetical commands lists for:
Editor
Assembler
Monitor

6502 Instructions Charts

DETAILS
Editor
Assembler
Monitor
Memory Usage

You must be warned that the MACROTEA is for experienced users of
the 6502 at the machine Tanguage level!!! If you are a beginner with
machine language, please get some of the books on the 6502 (such as those
by Sybex) and know that learning MACROTEA will take some time and effort.

For a first experience with MACROTEA, glance through the summaries
and then try the examples given with each feature in the details part. A
few hours spent doing this will save many hours later.

If you are wondering where the instailation instructions are, they
are in an Appendix at the very end of this Manual. After all, you are
going to use these only once.

Copyright © 1980, Skyles Electric Works

PAGE 2

NOTE: Blank pages such as this one will appear here and
there in this Manual. Since this is your Maiual, please
feel free to use these pages for your notes.

Copyright © 1980, Skyles Electric Works

PAGE 3

Errors

ERROR MESSAGES

Errors are reported in the form: !EE AT LINE XXXX/YY with
EE as the error number, XXXX the 1ine number, and if a file is
being used, /YY indicates the file number (PET physical device
number, which is usually 01 or 02). In some cases, for example,
an illegal command, the line number will have no meaning.

Example: 107 AT LINE 575
LIST OF ERROR MESSAGES
ED Can't recognize or complete the command.

00 The address or label isn't in the zero page.

01 The branch is out of range (-126 to +129 from P.C.)
02 Il1legal mnemonic for op code.

03 Unrecognized pseudo op.

04 .BA or .MC Operand isn't defined.

05 .DI isn't labeled.

06 Label is already defined (duplicated).

07 .EN missing at end.

08 Undefined or Illegal Tlabel.

09 Bad character in a decimal string. (Expected 0-9)
OA Missing or error in the Operand.

0B° Addressing mode not available for this op code.

0C Bad character in label.

0D Bad character in hex string. (Expected 0-9 or A-F)
OE Symbol Table full. Label not inserted.

OF Workspace full. Line not entered.

10 Line # too large in execution of NUMBER.

11 A parameter is expected here.

12 COPY or MOVE destination within Start to End Line #s
13 (Not Used)

14 Cannot make a relocatable object tape. (See Note below.)
15 EDIT command has a syntax error.

16 Bad Tape Unit number. (Should be 01 or 02.)

17 Bad Tape Load.(Checksum Error)

NOTE (14) A relocatable object tape requires that the previous assembly
had no errors. An assembly is required to build the object tape as
the label file must be present & correct.

An error will leave you in the Command Mode of the Editor. The .CE
pseudo op will continue assembly except for errors !04, !07 and !17.

Copyright © 1980, Skyles Electric Works

PAGE 4

LIST OF MACRO RELATED ERROR MESSAGES

20
21
22
€3
24

Macro not defined yet.

.EN found while a macro is being expanded.

.EN found in a conditional suppress.

.EN found in a macro definition.

Macros nested too deeply (32 maximum).

Bad characters or # of parameters don't match.
Macro already defined.

Macro definition crosses a file boundary.

(Not Used)

Macro definition found within another macro definition.
(1abel) in SET must be symbolic.

.ME found without prior .MD.

(Not Used)

(Not Used)

Too many macros (65536 maximum).

Too many files (65536 maximum).

Copyright © 1980, Skyies Electric Works

TO START MACROTEA:

MACROTEA is a machine language program resident in the ROM on the
MACROTEA board. Once you have installed MACROTEA, (the instructions to
install are in an appendix in the back of this manual) use the BASIC
POKE and SYS to the MACROTEA "cold start" address., If you leave
MACROTEA for some reason, the "warm start" address will preserve the
state of MACROTEA. In a "warm start" the text in the workspace and the
symbol table will be preserved,

"ecold start" "warm start"
POKE45056,199:3Y336864 SYS36998 from BASIC
G 90ag G 9¢86 from the Monitor
A Z from the Monitor

Here is a starting example:
POKE45056,199:5Y536864

@803-57FC 58pp-67FC PPOY
0800 5800

x|

The cursor is the "I/ symbol. See the SET command at page 76 for an
explanation of the numbers that appear.

In some cases, mostly when running code you have assembled, the
PET might "run away" - that is, the PET is caught in a machine language
loop or the 6502 has choked on an illegal instruction code. Press the
"reset" button on the MACROTEA board.

After pushing "reset" button SYS36864, then

"BR" back to the monitor, then "LOAD", the saved object code.

CONTROL OF QUTPUT

STOP key will abort any current operation. You will be in the
MACROTEA Editor., (Exception = during tape or disk I/0, pressing
STOP will leave you in BASIC. SYS 370@1 to warm start
MACROTEA.)

SPACE key will "freeze" any MACROTEA output or operations. Press any

other key to resume operations.

(e) 1982 Skyles Electric Works 8/14/82

PAGE b

DEFAULT SETTINGS

Many aspects of MACROTEA are controlled by flag values - which
must start at one setting or another. If you do not explicitly tell
MACROTEA otherwise, the settings shown below will be in effect.

EDITOR DEFAULT SETTINGS
The memory settings are defaulted to:
a8ee - 58p¢ Text Workspace Area
5800 -6800 Symbol Table
Note that the SET command will reﬁort these with a 3 byte
offset at the upper end, ie, the Symbol Table is reported as

58@P-67FC, and when the SET command is used to change the map,
subtract 3 from the intended upper bound.

Due to the various combinations of character ROMs and PET models,
MACROTEA POKEs the PET to the Upper Case/ Graphics mode to
provide uniformity. In most applications, there is no need to
enter shifted characters. (In some cases, MACROTEA will not
correctly understand them anyways.)

GET,PUT and OUTPUT default to Tape Unit #1:
GET without a "filename" will accept any file.
PUT without a "filename" creates a file with a null name.

Disc versions of MACROTEA will default GET and PUT to the disc.
Non-disc versions of MACROTEA default to the tape cassettes for
GET and PUT.

ASSEMBLE defaults to the LIST option, starting at line 0.
An assembly will also make FORMAT SET and leave it that
way.

AUTO mode is not in effect.

FORMAT is CLEAR (until an assembly)

MANUSCRIPT is CLEAR.

PRINT will print the entire workspace if not given a line number(s).

Copyright 1982 Skyles Electric Works 8/14/82

PAGE 7

ASSEMBLER DEFAULT SETTINGS

The assembly will be from the source text in the workspace.
Object code will not be pfaced in memory.

An object Tisting will be generated.

The starting address is $7800

If the .0S pseudo op is present, code will be stored starting
at $78¢9

Assembly will stop if an error is detected.
Source on tape will be read from Tape Unit # 1.

Macros are not expanded during an assembly.

Copyright 1982 Skyles Electric Works 8/14/82

Copyright © 1980, Skyles Electric Works

PAGE 8

DISK VERSION DEFAULT SETTINGS

Those of you with the Commodore Disk version of MACROTEA should note
that some of the MACROTEA defaults are different for your version:

GET, PUT commands will select the disk as the I/0 device for file
transfer & placement of relocatable code. You must provide the
device & filename in the usual "drive:filename" form.

The command DISK is present and active. It performs the function
of the "Wedge" (called DOS SUPPORT by Commodore). Disk commands
in quotes after DI will be executed in the same way as "Wedge"
does. DI by itself looks at and reports the error channel.

The .CT and .EN pseudo-ops will use the disk as the file I/0
device. .CT must have the "drive:filename" of the next file to
be assembled. .EN must have the "drive:filename" of the first
file in the assembly chain.

(c)1980 Skyles Electric Works
5/16/80

PAGE 9

MACROTEA GLOSSARY OF TERMS

As we all know, cpu's aren't standard, languages aren't standard,
and (clearly!) neither are assemblers. The terms used in MACROTEA are
shown below along with their meaning in this manual.

Argument MACROTEA's macros can accept values which differ
each time the macro is called. These arguments are
enclosed in parenthesis and separated by spaces.

Command This is always an instruction for the Editor part
of MACROTEA, or for the Monitor. No line number is
used with a command.

Directive A command to the assembler, placed in the second
field of the source text. (Directives don't have
the peroid used in Pseudo-ops.)

Error MACROTEA cannot understand all combinations of
letters & symbols, or for some reason cannot do as
you instruct. This is usually an error. Not all
errors will get caught, however.

Expression The operand in many cases is arrived at by computation
from other labels and numbers. The combination of
labels, numbers, and arithmetic operators is an expression.

Label This is usually an address value, and sometimes
just a handy number. Labels are defined in the
first field, and referenced in the third field of
the source text.

Macro A macro defines a section of code under a name which
is reassemb]ed each time the macro is called. Placing
the macro's name in the Op-Code field calls the macro.

Op-Code This is always a 6502 mnemonic.

Operand The operand will always result in a numerical value,
and is the third field in an assembly source text.

Parameter Many commands need some values or tags for their
use. These are called parameters and follow the
command. Parameters are separated by spaces.

Pseudo-op This is a fake "Op-code" which instructs the
assembler to perform actions related to assembly.

Symbol Table As the assembler scans the source code, the labels
are stored in this area of memory. When finished,
the Symbol Table holds the labels and their values.

Workspace This is the area in memory used by the Editor to
store the text. For assembly, the source code is
taken from the workspace or from tape.

Copyright © 1980, Skyles Electric Works

pace 10

Copyright © 1880, Skyles Electric Works

PAGE 1 1

Editor

EDITOR COMMANDS

The MACROTEA Editor has commands for both text editing and
for the initiation and control of the assembly process. All
Editor commands and parameters can be abbreviated to their first
two characters. For example, NU is the same as NUMBER.

TeXt is entered into the workspace by numbering each line.
A line that does not begin with a number is seen as a command.
Individual lines may be deleted by entering their number. The
PET Screen Editor is used to modify individual lines, and RETURN
passes the modified T1ine to the MACROTEA Editor.

A command and its parameters must be separated by spaces.
Do not use commas, as the MACROTEA will see this as an error.

LIST OF EDITOR COMMANDS

Each command and its variations is shown below. The page
number indicates where to find more detailed information.

(Line Number) (Characters) Enter into workspace.
" nil Delete Tine. Page 41
AUTO (increment) Automatic line numbering for text entry.
@ or nil - Exit AUTO mode. Page 45

NUMBER (Start Line#)(Increment) Renumbers text lines in workspace.

Page 47
FORMAT SET PRINT will now display workspace
formatted in tabulated columns.
CLEAR Disable FORMAT mode. Page 73

-

COPY (Destination#)(Start#)(End#) Copys text lines in Start# to End#
to just following Destination#.
Page 50

-

MOVE(Destination#)(Start#)(End#) Moves text lines in Start# to End#
to just following Destination#.
Page 53

e P

(c)1980 Skyles Electric Works
5/16/80

PAGE 12

DELETE (Start Line#)(End Line#)
(Line#)

CLEAR

PRINT (Start Line#)(End Line#)
(Line #)
nil

PUT (D1 or D2)("Filename")
nil

"drive:filename"

GET (D1 or D2)("Filename")
nil
"drive:filename"

DUPLICATE

HARD SET (First Page#)

CLEAR

ASSEMBLE LIST (Start Line#)

NOLIST (St Lin#)
nil

PASS

RUN (Tabel)

SYMBOLS

- .-

Deletes all Tines included in range.

Deletes one Tine. Page 55
Delete entire workspace text. Page 58

Display indicated text lines on screen.
Display one line.

Print entire workspace. Page 70

Write text file from workspace to tape.
Tape #1, Null filename.

Write from workspace to disk file.
Page 82

Read text file from tape into workspace.
Tape #1, Any filename.

Read text file from disk into workspace.
Page 85

- — -

Copy tape from Drive 2 to Drive 1.
Page 88

Print on printer all MACROTEA output. If
page # is indicated, start with given
page number.

Disable HARD mode.

Page 72

Ty p——

Assemble starting at Start Line# in workspace.

Also display listing on screen.
Don't display listing on screen.
Start at Line P. LIST default. Page 93

Perform second pass of assembly. (For
assemblys using tape files). Page 99

Execute assembled program starting at label.

(Return via RTS.) Page 96

-

Page 101

- -

SET (Text Start) (Text End) (Symbol Start) (Symbol End)

nil

Change memory boundaries for workspace,
symbol table.

Report current values of parameters.
Page 76

PAGE 13

DISK (any disk command) Execute Commodore Disk Command.
nil Read & report Disk Error Channel.
Page 90
EDIT (argument) Edit/change lines of text in work-
space. Page 63
FIND (argument) Find text string in workspace.Page 59
MANUSCRIPT SET PRINT will not display line numbers.
CLEAR PRINT will display line numbers.
Page 74
BREAK Jump to Monitor. (6502 BRK used.)
Page 98
APPEND ("File Name") Appends source code to the end of

existing source code

Copyright 1982 Skyles Electric Works 8/14/82

(c)1980 Skyles Electric Works
5/16/80

PAGE 1 4

Copyright © 1980, Skyles Electric Works

éAGE 1.5

Assembler

ASSEMBLER COMMANDS

The assembler reads the text in the workspace or from tape
cassette files and produces 6502 machine language code.

Text that is intended for assembly should have this format:

(Line Number)(Label) (Op Code) (Operand) ; (Comment)

Labels must immediately follow the Line Number without any spaces.
Op Codes must either be 6502 Mnemonics or Assembler Pseudo-ops.
A1l Comments must be preceded by the semi-colon. Spaces are
required between the Label and Op Code, the Op Code and any Operand,
and the Operand and the semi-colon before any Comments.

LIST OF ASSEMBLER PSEUDO-0PS

The pseudo-ops accepted by the assembler are listed below.
See the indicated pages for further information. All pseudo-ops
have the period as their first character.

.BA (expression)

.CGE

LS

AG

.CT "filename"
"drive:filename"

.0S

.0C

.MC (expression)

.DS (expression)

.BY (values)

Begin assembly at (expression). Page
Similar to ORG in other assemblers.

Continue assembly if errors are found.Page
Print source 1isting on Pass 2. Page
Inhibit source listing on Pass 2. Page
Continue source from a tape file. Page

If you have a disk, the "drive:filename" -
for the next file is required.

Load object code into memory on Pass 2.
Page

Don't Toad object code into memory on Pass
(Default setting) Page

Store object code starting at (expression).

Code is assembled as specified by .BA.Page

Skip (expression) bytes to define storage.
Page

Store data per (values). Page

(c)1980 Skyles Electric Works

5/16/80

120

112
110
110
112

120

120

120

125
125

'PAGE 16

.SI (expression) Store (expression) in next two memory bytes
as an address (internal address). Page 125
.DI (expression) Define value of label to be that of (expression).
.DI must be labeled (internal address).
Page 125
.EN "filename" End of source text. .EN is required.
"drive:filename" Disk users must state "drive:filename" of
first file if .CT is used. Page 112
.EJ Send form-feed to printer if HARD SET.
Page 110
.MD (arguments 1ist) Define a macro. Page 136
.ME End of macro definition. Page 136
EC Don't expand macro on source listing.
Page 136
-ES Expand macros on source listing. Page 136

(c)1980 Skyles Electric Works
5/16/80

PAGE 17

LIST OF ASSEMBLER CONDITIONAL DIRECTIVES

The type of IFx directive and the value of the (expression)
determines if the following code is to be assembled.

L End of IFx block. Page 132
IEQ (expression) Assemble if (expression) = f Page 132
IMI (expression) Assemble if (expression) < @ Page 132
INE (expression) Assemble if (expression)<> P Page 132
IPL (expression) Assemble if (expression)>= p Page 132
SET (1abel) = (expression) Redefine the value of a label. Page 125

Note that the If directives follow the 6502 Branch Instruction
Conditions - for example, BNE is Branch If Not Zero, and INE is for
IF Not Zero.

Copyright © 1980, Skyles Electric Works

PAGE 1 8

ON ADDRESSING MODES

MACROTEA will not assemble operands less than $FF into the 6502
base page instructions unless explicitly told to do so. The addressing

modes are:

- Immediate LDA #45+F00
nil - Absolute LDA 45+F00
* - Base Page LDA *45
Sy Absolute Indexed LDA FOO,X

R o S LDA F0O,Y

S T Base Page Indexed LDA *45,X

* ,Y pe 1" it " LDA *45,Y

s Indexed Indirect LDA (F00,X)
(),Y- Indirect Indexed LDA (F00),Y
() - Indirect JMP (FOO)

A - Accumulator ROR A

To help with address manipulation, two extensions to immediate
addressing are provided:

#H, - Hi Byte of Value LDA #H,F00
#, - Lo Byte of Value LDA #L,FO0

Also, ASCII values are available:

' - ASCII Value LDA #'Q

Copyright © 1980, Skyles Electric Works

"PAGE 19

ON LABELS AND EXPRESSIONS

In most cases a label is somewhat T1ike a variable in BASIC. It
is "assigned" (defined) by placing the label's name immediately after
a line number. Labels may be defined only once, unless the SET directive
is used.

Label names are from 1 to 10 characters. For readability, select
the first character from A-Z, and further characters from A-Z or P-9.

The operand field will accept numerical values, labels, or simple
arithmetic expressions made from numbers & labels. The final value of
the operand must be a positive number in the range $0000 to $FFFF.

Valid forms for numbers are shown below. If the digits string is
too long, the rightmost digits are used to form a number in the legal

range.
nnnnn - Decimal number. nnnn taken from (0123456789)
$nnnn - Hexadecimal number. from (0123456789ABCDEF)
%nnnnn - Binary number. from (01)

The program counter is indicated by =. Its value is taken from the
counter's value when the current line was first encountered.

Expressions are numbers, labels, or = separated by the operators
+ or -. Unary minus is not permitted, and the expression is evaluated
from left to right(like a simple calculator).

Please note that the arithmetic operations of multiply (*) and
divide (/) are not available in MACROTEA.

Note: A label 'A' by itself in an operand field will indicate the
accumulator addressing mode. Use A+p to force evaluation of the label
PAY.

Exbressions may not have embedded blanks. A blank will force
the assembler to assume the rest of the line is a comment.

Copyright © 1980, Skyles Electric Works

pacE 20

Copyright © 1980, Skyles Electric Works

PAGE 21
ine or ignore

MACROTEA MONITOR REFERENCE CARD

The monitor expects a single letter command followed by any
The PET's screen editor may be used to modify memory or registers.

parameters separated by spaces or commas. If the monitor cannot decipher

a command, it will print a question mark in the command's 1
the command. A period is printed as the monitor's prompt.

MONITOR COMMANDS

Monitor

gy 1| (Juswuoaiaua daay)jaejsuwaem yIL0HIVW 03 31X3 inodLz FARTA
9%1 J1ISvd 03 3tx3 L9 X10¢
19 T|A1quassestp dajsatbuls yjtm apod 2069 23ndax3 qLeM (4ppe) M6l
bs1 €4PPe 03 ZJppe-TJppe W04} Ado)| Jajsues (€4pPe) (24pPR) (14PPR) 18I
971 JISyg Wo4} JOJLUOH J9JUa-IY Jajuasds PSAS|LT
(1 20 ¢ oa1ap Ystp 103 :T 20 :§) (T+4ppe pua)‘(Jppe 34e3s)‘(#20LA3P) ", IHYNITIH, S
791 3|Ls adey 40 yS|p Ojul AuouBw IARS aAes |(T+4ppe pua)‘ (Jppe 3Jels)‘(gadtaap)*,IWYNITI4:d, S|91
811 saa}stbad 20G9 40 sardod s,ao0jtuoy Lejdsig| ssa3isibaa dlst
6G1 - JuL0dye34q 340S Y3LM 3p0OI 20G9 33INdax3| 3dedayaLnb (4ppe) DbT
st §eorARp fue hyroads 10t (#aoLaap) 0
991 J2jutad 03 IndIno 403LUOK pUIS uado | ***p #oo1A9p SBATH YO 193391 Y3~ " - olet
6v1 xay up Adowsw a3Lam Jo/pue Ae|dsig Kaownw (zappe) (14ppe) W|ZT
(T 0 @ 2ATIp YSTp JOF :[I0 :g) srcadeyt (#221A9p (euorydo)® JWYNI T4, 1
91 Aaowsaw ojut 3Ly adey 40 }YSLp peo] peoy | ~--¥ysip* " (#20LA9p)* AWYNITId:d, 1|1
G91 234g snje1s O/1 13d pue DYl 4o03Luoy 3asay dnuea |y Ajot
st robupl [roxast (z4ppe) (14ppR) 1
0SGT| 1125V pue xay ut Aaowaw 23tJm a0/pue Ke|dsig|ajeboduajuy | - - saurr gz- - (4ppe) 1] 6
TUIrosy qunyttt (bas [1)SY,) (24Ppe) (14PPR) H
€£GT|aouanbas patjidads jo sassaJappe jaels Aejdsig juny | - -xay juny- -t (bas a3hq) (z+ppe) (14ppe) H| 8
861 8pod 2049 a31n2ax3 0306 (+ppe) 9] ¢
GS1 934q patry1oads y3im abuea Aaowow a3Lap LLLs (334q) (z4ppe) (14ppe) 4| 9
s --ebuel [T0I05" " " (z4ppe) (14ppR) @
281 1X83 224N0S Z0y9 pue xay ul Asowsuw Ae|dsig|a|quassesip | *-'sauryr gz-*- (4ppe) 0| §
991 u3342s 03 3INdIN0 A0} LUOK puas 8s0|2 2l v
6S1 puewwod {) 404 juiodyeasq 340s 35| Jurodyeauq (3unod) (4ppe) g| ¢
Of T|V3L04IYW W04 AOFLUOY JD3UD JO/puR BZL|BLILU] yeaqq 48 1o AvIya| ¢
91 (buiryjhaane saseds)34eisplod YIL0YIVW 03 211X3 Jeajo|e vl 1
39vd NOILIV JINOW3NK XVLNAS-ONYWWOD "ON

© 1980, Skyles Electric Works

Copyright

22

TO START THE BASIC PROGRAMMERS TOOKIT OR COMMAND-0

X (exit) to BASIC then type

POKEL6106,251:SYS 45056 (Toolkit)
POKE46106,251:5YS 36864 (Command-0)

You should see on the screen
(¢)1979 PAICS or (c) 1981 Robin Chang

You are now in BASIC with the Toolkit or Command-0 energized. Enjoy.

TO RESTART MACROTEA:

It is permissible to switeh from the Tookit to MacroTeA with the PET
power on. You should be in the READY mode, with a blinking cursor,
before switching. Many ROM's such as the BASIC Programmers Toolkit
change some page zero RAM memory locations. Before you switch out of
the Toolkit ROM you must return these locations to their previous
state. You may do this with the "reset" button or if you wish to save
the contents of memecry below the screen, the following machine language
instructions should be executed before leaving the Toolkit.

for "old PET ROMs"

Hexidecimal Decimal
Code Nemonic "Poke"

A2 1C LDX #3%1¢ 162 28

BD B4 E@ LOOP LDA $E@B4,X 189 180224
95 C1 STA $C1,X 149 193

CA DEX 202

D@ F8 BNE LOOP 208 248

60 RTS 96

for "new PET ROMs"

Hexidecimal Decimal
Code Nemonie "Poke"

A2 1C LDX #$1C 162 28

3D FB E@ LOOP LDA $EQF8,X 189 248 224
95 6F STA $6F,X 149 111

CA DEX 202

D@ F8 BNE LOOP 208 248

60 RTS 96

Of course with Command-0, a simple KILL command solves the above
problems,

Then type POKE45056,199:5Y536998 (Warm Start)

Copyright 1982 Skyles Electric Works 8/14/82

MACROTEA MONITOR REFERENCE CARD

(FuawuoaAua daay)jar)suaemM YIL0YIVW 03 31X3]

91 nodz 7|12
91 JISvg 01 1LX3 3LX9 X|10¢
191 |[Alquessestp dajsa|buls yiLm apod 2pG9 3ndaxj qLem (4appe) Mf61
bS1 g4ppe 0} ZJppe-TJ4ppe 3pod IAOK| Jdajsuedy (cappe) (z4ppe) (T4pPR) 1|8I
9%1 JISYg Wo4) A03LUOK JDUD-BY A33uasAs ¥SASIZT
(T I0 g DATIP YSTP I0F i I0 :ff) (T+4ppe pua)* (Appe 34e3S)*(#291A3p)° IWYNITId, S
91 9|14 adey Jo ySip ojuL Auoudw IARS 9Aes ((T+appe pud)®(uppe 34e3S)°(#20LA3p)° ,IWYNITI4:d, S|91
8y1 s433stbad zpG9 J0 sa1dod s,403Luoy Aepdsitg| sdaa3sibaud ylst
6G1T jutodyeadq 330s Y3Lm apod ZpG9 33ndax3| ddeaydoLnb (4ppe) D|VI
**-pgoorasp hAue hyrosds 10°-* A*mu:wE 0
991 J49qutad 03 3nd3no J403LUOK PUBS uado | ***p gooTASp searbh yo xo339T BYI* - olet
6b1 Xay ul Aaowdw ajLam so/pue Aepdsiq Aaoupu (z4ppe) (14ppeR) W|2I
(I 10 g 2ATIP YSTP I0F T 10 if) “--odeg--- (#321A3p LeuoL1do) ¢, IWYNI T4,
91 AJdowaw ojut 3|ty adey 40 YSiLp peo] peof | - ysIpt°- (#90LA0p)° , AWYNITId:d, T|TT
S91 9349 snie3s /1 13d Pue DYI 403LuUOl 33s3Y dnues |} A|0T
*--abupI [[OIOS""" (z4appe) (14pPR) 1
0ST | T112SY pue xoy ut Aaowsw 33tuam Jo/pue Aeidsig|aieboaaajul | - --sourr gz °- (appe) 1| 6
**°IIDSY Jumy*-°* (bas 112SV.) (z24ppe) (14ppeR) H
€GT [9ouanbas patLitoads J0 sassauppe juaeys Aepdsig juny | "+ xey uny--* (bas 214q) (zuappe) (14ppe) H]| 8
861 et 9p0d ¢049 93ndex3] 030b (4ppe) 9| ¢
SS1 934q patjtoads yiim abuea Auowsw a3Lap LLLs (2349) (z4ppe) (14ppe) 4] 9
++9buUPI TTOIOS"" (z4ppe) (14ppe) @
ST 1X33 824n0sS 20g9 pue xay ul Auaowsw Ae|dsiq|9|quassesLp | ---saurr gz - (appe) Q| §
991 UsaJ4ds 031 INdIN0 U403 LUOK puas 9s0|2 2| ¢
6G1 puewwod {) 40} Furodyeauaq 3140S 3195| urodyeadq (3unod) (4ppe) 49| ¢
9%T [VILOYOYW WOJJ U03LUON JBJUI JO/pue BZL|eLILU] Aeauq 48 1o Av3IYy| ¢
9p1 | (BuLylA4aA9 S35BUD)3URISPLOD YILOYIVW 03 3LX3 dea|o||e Vit
9v¢ NOILIYV JINC W XYLNAS-ANYWHOI ON

Copyright 1982 Skyles Electric Works

BLANK

PAGE 2 3

6502 Stuff

6502 INSTRUCTION SET TABLES

The tables provided here are intended for convenient reference
use only. For a detailed description of the 6502, see the MOS Technology
6502 Programmer's Manual or one of the several books about the 6502.

The alphabetical 1ist and the instruction diagrams are from the
MOS manual. The table of addressing modes & op codes is from a paper by
T.G. Windeknecht in the 1979 NCC Personal Computing Proceedings.

6502 INSTRUCTION SET - ALPHABETIC LIST

ADC Add Memory to Accumulator with Carry JSR Jump to New Location Saving Return Address
AND “AND” Memory with Accumulator
ASL Shift Left One Bit (Memory or Accumulator) LDA Load Accumulator with Memory

LDX Load Index X with Memory
BCC Branch on Carry Clear LDY Load Index Y with Memory
BCS Branch on Carry Set LSR Shift Right One Bit (Memory or Accumulator)
BEQ Branch on Result Zero .
BIT Test Bits in Memory with Accumulator NOP No Operation
BMI| Branch on Result Minus Y .
BNE Braisch oo Rasclt hot Zems ORA “OR" Memory with Accumulator
BPL Branch on Result Plus PHA Push Accumulator on Stack
BRK Force Break PHP Push Processor Status on Stack
BVC Branch on Overfiow Clear PLA Pull Accumulator from Stack
BVS Branch on Overflow Set PLP Pull Processor Status from Stack
CLC Clear Carry Flag ROL Rotate One Bit Left (Memory or Accumulator)
CLD Clear Decimal Mode ROR Rotate One Bit Right (Memory or Accumulator)}
CLI Clear Interrupt Disable Bit RTI Return from Interrupt
CLV Clear Overflow Flag RTS Return from Subroutine
CMP Compare M y and A lat
CPX Compare Memory and Index X SBC Subtract Memory from Accumulator with Borrow
CPY Compare Memory and Index Y SEC Set Carry Flag

, SED Set Decimal Mode

DEC Decrement Memory by One SEl Set Interrupt Disable Status
DEX Decrement index X by One STA Store Accumulator in Memory
DEY Decrement Index Y by One STX Store Index X in Memory

STY Store Index Y in Memory

EOR “Exclusive-Or" Memory with Accumulator
TAX Transfer Accumulator to Index X

INC Increment Memory by One TAY Transfer Accumulator to Index Y
INX Increment Index X by One TSX Transfer Stack Pointer to Index X
INY Increment Index Y by One TXA Transfer Index X to Accumulator

TXS Transfer Index X to Stack Pointer
JMP Jump to New Location TYA Transfer Index Y to Accumulator

Copyright © 1980, Skyles Electric Warks

PAGE 2 4

6502 INSTRUCTION SET - OP CODES & ADDRESSING MODES TABLE

The abbreviations at the top of the table are:

INSTR Instruction ZPY Zero Page, Y

IMP Implied ABS Absolute

IMM Immediate ABX Absolute, X

ACC Accumulator ABY Absolute, Y

REL Relative IND Indirect

ZPG Zero (Base) Page INX (Indirect, X)

ZPX Zero Page, X INY (Indirect),Y

INSTR IMP IMM ACC REL ZPG ZPX ZPY ABS ABX ABY IND INX INY
ADC -- 69 -- -- 65 75 -- 6D 7D 79 -- 61 71
AND -- 29 -- -- 25 35 -- 2D 3D 39 -- 21 31
ASL -- -- 0OA -- 06 16 -- OE 1E =-- =-- == --
BCC e [B e C
BCS == == == B0 == == e- e ee ae e e a-
BEQ -= == == F0 == == == = = -- -- a- --
BIT -- == == -= 24 -- -- 20 -- - == -- --
BMI == == == 30 == e= e em e ee e e a-
BNE I § [B
BPL == == == 10 == -= - == == e= e= e= -
BRK 00 -- == == co e ae em e ee em ee -
BVC - 1 e
BVS e 4 § B T T R R
CLC 18 == == ms ce e me e ee ee e ee e-
CLD 0 e
CLI B8 == == - ee ee ee ee ee el e ee e-
CLV B8 == == == a- ee ee ee ee e ee em e-
CMP -- €9 -- -- (€5 D5 -- CD DD D9 -- C1 DI
CPX -- E0 -- == E4 -- -= EC == == == = --
CPY -- €0 -- -- C4 -- =-- CC == == == == ==
DEC -- == == == (C6 D6 =-- CE DE == == == ==
DEX CA == == o co me eo ee me ee ee e e
DEY 88 == o= c= o = == es cn co = o= ==
EOR -- 49 -- -- 45 55 -- 4D 5D 59 -- 41 51
INC - == == -- E6 Fb6 =-- EE FE == == == ==
INX E8 == == == = cm me em e e ee e e
INY C8 == == == mo cm em me ee ae e ee -
JMP -= == == == == == == 4C -- -= 6L -- ==
JSR T4
LDA -- A9 -- -- A5 B5 -- AD BD B9 -- Al BI
LDX -- A2 -- -- A6 -- B6 AE -- BE == == ==
LDY -- A0 -- -- A4 B4 -- AC BC =-- -- - ==
LSR -- -- A4pA -- 46 56 =-- 4E BE - -= = -
NOP EA == == e s e e me e me em e e
ORA -- 08 -- -- 05 15 -- OD 1D 19 -- 01 M

Copyright © 1980, Skyles Electric Works

Copyright

INSTR IMP IMM ACC

ZPG ZPX

PHA 48 -- --
PHP 08 -- --
PLA 68 -- --
eLpP 28 -- --
ROL -- == 2A
ROR -- == 6A
RTI 40 -- --
RTS 60 -- --
SBC -- E9 --
SEC 38 == ==
SED F8 =<~ ==
SEI 78 == --
STA e
STX LN
STY == == e
TAX AA -- -
TAY A8 -- --
TSX BA -- --
TXA 8A -- --
TXS 9A -- --
TYA 98 == =-

© 1980, Skyles Electric Works

PAGE 2 6

6502 INSTRUCTION SET - INSTRUCTION DIAGRAMS & GORY DETAILS

ADC ADC

Add memory to accumulator with carry

Operation: A+ M+ C=+ A, C NECIDV
e
Addressing Assembly Language [0)3 No. No.
CODE Bytes Cycles
Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 &
Absolute, X ADC Oper, X 7D 3 4%
Absolute, Y ADC Oper, Y 79 3 4%
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirect), Y ADC (Oper), Y 71 2 5%

*

AND

Logical AND to the accumulator

Add 1 if page boundary is crossed.

AND

“AND" memory with accumulator

Operation: AA M=+ A NECIDUV
¥ sy
Addressing Assembly Language oP No. No.
CODE | Bytes Cycles
Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 4%
Absolute, Y AND Oper, Y 39 3 4%
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 31 2 5

* Add 1 if page boundary is crossed.
ASL Shift Left One Bit (Memory or Accumulator)

ASL

ASL

operation: C = |7]6]s[4[3]2]1]g] <o N2CIDYV
AN —-= =
Addressing Assembly Language (3 No. No.
CODE | Bytes Cycles
Accumulator ASL A gA 1 2
Zero Page ASL Oper @6 2 5
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper @E 3 6
Absolute, X ASL Oper, X 1E 3 7

Copyright © I1980, Skyles Electric Works

BCC BCC Branch on Carry Clear BCC
Operation: Branch on C = @ NgCIDV

Addressing Assembly Language oP No. No.
CODE | Bytes | Cycles

Relative BCC Oper 9@ 2 2%

* Add 1 if branch occurs to same page.
* Add 2 1if branch occurs to different page.

Bcs BCS Branch on carry set Bcs

Operation: Branch on C = 1 NZ2CIDV

Addressing Assembly Language oP No. No.
) CODE | Bytes | Cycles

Relative BCS Oper B¢ 2 2%

* Add 1 if branch occurs to same page.

% Add 2 if branch occurs to next page.

BEQ BEQ Branch on result zero BEQ

Operation: Branch on 2 = 1 NZCIDV

Addressing Assembly Language oP No. No.

Relative BEQ Oper F@ 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

BIT BIT Test bits in memory with accurnulator B"
Opera;ion: ANMNM, H7 + N, H5 -V
Bit 6 and 7 are transferred to the status register. NZCIDYV
If the result of AAM is zero then Z = 1, otherwise H.J,-’ i H6
Z2=29 !
Addressing Assembly Language opP No. No.

CODE Bytes Cycles

Zero Page BIT Oper 24 2
Absolute BIT Oper 2C 3

Copyright © 1980, Skyles Electric Works

PAGE 2 8

BM' BMI Branch on result minus BHI
Operation: Branch on N = 1 N2CIDV
Addressing Assembly Language op No. No.
CODE Bytes Cycles
Relative BMI Oper 3¢ 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BNE BNE Branch on result not zero BNE
Operation: Branch on Z = 0 N2CIDV
Addressing Assembly Language oP Ko. No.
CODE | Bytes Cycles
Relative BNE Oper hoiv] 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BPL BPL Branch on result plus BP'.
Operation: Branch on N = @ NZ2CIDV
Addressing Assembly Language {0)3 No No.
- CODE Bytes Cycles
Relative BPL Oper 1¢ 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BRK BRK Force Break BRK
Operation: Forced Interrupt PC+ 2 + P + NZ2CIDV
—— 1 ——
Addressing Assembly Language oP No. No.
CODE | Bytes Cycles
Implied BRK ga 1 7

1. A BRK command cannot be masked by setting I.

Copyright © 1980, Skyles Electric Works

Copyright

BYC

BVC Branch on overflow clear

PAGE 29

BYC

Operation: Branch on V = (NECIDYV
Addressing Asgembly Language oP No. No.
CODE | Bytes Cycles
Relative BVC Oper 59 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BVS BVS Branch on overflow set BVS
Operation: Branch on V= 1 N2CIDV
Addressing Assembly Language oP No. No.
CODE Bytes Cycles
Relative BVS Oper 79 2 2*
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
Clc CLC Clear carry flag CI.C
Operation: @ - C N2CIDYVY
—_—— = ——
Addressing Assembly Language OP No. No.
CODE | Bytes Cycles
Implied cLC 18 1 2
CI.D CLD Clear decimal mode CLD
Operation: @ + D NZ2CIDV
—— g -
Addressing Assembly Language oP No. No.
CODE | Bytes | Cycles
Implied CLD D8 1 2
Cll CLI Clear interrupt disable bit cu
Operation: @ + I NZCIDV
—_——— g ——
Addressing Assembly Language oP No. No.
CODE | Bytes | Cycles
Implied CLI 58 1 2

© 1980, Skyles Electric Works

Copyright

pacE 30

CLy

CLV Clear overflow flag

Operation: ¢ = V NECIDV
————— ¢
Addressing Assembly Language OoP No. No.
CODE | Bytes Cycles
Implied CLV B8 1 2

CMP

CMP Compare memory and accumulator

CMP

Operation: A - M N2ZCIDV
Y VA —==
Addressing Assembly Language oP No. No.
CODE | Bytes Cycles
Immediate CMP #Oper c9 2 2
Zero Page CMP Oper c5 2 3
Zero Page, X P Oper, X D5 2 4
Absolute CHP Oper CcD 3 4
Absolute, X CMP Oper, X DD 3 4%
Absolute, Y CMP Oper, Y D9 3 4%
(Indirect, X) CMP (Oper, X) Cl 2 6
(Indirect), Y CMP (Oper), Y Dl 2 5%
* Add 1 if page boundary is crossed.
CPX CPX Compare Memory and Index X CPX
Operation: X = M N2CIDV
YA A ===
Addressing Assembly Language opP No. No.
CODE Bytes Cycles
Immediate CPX #Oper E@ 2
Zero Page CPX Oper Ed4 2 3
Absolute CPX Oper EC 3 4
CPY CPY Compare memory and index Y CPY
Operation: ¥ = M NZCIDV
YA A ===
Addressing Assembly Language op No. No.
CODE | Bytes | Cycles
Immediate CPY #Oper ce 2
Zero Page CPY Oper C4 3
Absolute CPY Oper cc 3

© 1980, Skyles Electric Works

PAGE 31

DEC DEC Decrement memory by one DE(
Operation: M - 1 =+ M NZ2CIDV
V==
Addressing Assembly Language OoP No. No.

CODE Bytes Cycles

Zero Page DEC Oper cé 2 5

Zero Page, X DEC Oper, X D6 2 6

Absolute DEC Oper CE 3 6

Absolute, X DEC Oper, X DE 3 7
DEX DEX Decrement index X by one DEX
Operation: X - 1 =+ X N2CIDV

' S ————
Addressing Assembly Language oP No. No.

CODE | Bytes | Cycles

Implied DEX CA 1 2
DEY DEY Decrement index Y by one DEY
Operation: Y - 1 + Y NECIDV
oL D
Addressing Assembly Language oP No. No.

CODE | Bytes Cycles

Implied DEY 88 1 2
EOR EOR “Exclusive—Or' memory with accumulator EOR
Operation: A ¥ M + A NZ2CIDYV
-
Addressing Assembly Language OoP Ne. No.
CODE Bvtes Cycles
Immediate EOR #0Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4%
Absolute, Y EOR Oper, Y 59 3 4*
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect),Y EOR (Oper), Y 51 2 5%

* Add 1 if page boundary is crossed.

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 3 2

INC

Operation: M+ 1 + M

INX

Operation: X+ 1 + X

INY

Operation: Y + 1 + ¥

JMP

INC Jncrement memory by one

INC

N2CIDYV
VY - =
Addressing Assembly Language oP No. No.
CODE | Bytes | Cycles
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
INX Increment Index X by one INX
N2CIDV
i
Addressing Assembly Language oP No. Ko.
CODE Bytes Cycles
Implied INX E8 1 2
INY Increment Index Y by one lNY
NZCIDV
o oo
Addressing Assembly Language oP No. No.
CODE | Bytes | Cycles
Implied INY ce 1 2
IMP Jump to new location JMP
Operation: (PC + 1) -+ PCL NZCIDV
(PC+2)+PCH e - ——
Addressing Assembly Language OP No. No.
CODE | Bytes | Cycles
Absolute JMP Oper 4c 3
Indirect JHMP (Oper) 6C 5

JSR

ISR Jump to new location scving return address

ISR

Operation: PC + 2 +, (PC+ 1) = PCL NBCIDV
(PC+2)+PCH = e m——
Addressing Assembly Language oP No. No.
CODE | Bytes | Cycles
Absolute JSR Oper 20 3 6

© 1980, Skyles Electric Works

PAGE 33

LDA LDA Load accumulator with memory I.DA
Operation: M + A NZ2CIDYV
R
Addressing Assembly Language OoP No. No.
CODE | Bytes | Cycles
Immediate LDA # Oper A9 2 2
Zero Page LD. Oper AS 2 3
Zero Page, X LDA Oper, X B5 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X BD 3 4%
Absolute, Y LDA Oper, Y B9 3 4%
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y Bl 2 5%
* Add 1 if page boundary is crossed.
le LDX Load index X with memory le
Operation: M + X NZE2CIDV
Y S
Addressing Assembly Language oP No. No.
CODE Bytes Cycles
Immediate LDX # Oper A2 2 2
Zero Page LDX Oper A6 2 3
Zero Page, Y LDX Oper, Y B6 2 4
Absolute LDX Oper AL 3 4
Absolute, Y LDX Oper, Y BE 3 4%
* Add 1 when page boundary is crossed.
lDY LDY Load index Y with memory lDY
Operation: M = Y NZCIDV
Vo e ==
Addressing Assembly Language oP No. No

CODE | Bytes | Cycles

Immediate LDY #Oper AQ 2 2
Zero Page LDY Oper A4 2 3
Zero Page, X LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4%

* Add 1 when page boundary is crossed.

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 34

LSR

LSR Shift right one bit (memory or accumulator)

Operation: @ — HﬁlS\&llﬁllelO] — C

NOP

LSR

N2CIDV
gy —==
Addressing Assembly Language OF No. No.
CODE | Bytes Cycles
Accumulator LSR A 4A 14 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X SE 3 7
NOP No operation NOP
Operation: No Operation (2 cycles) NZCIDV
Addressing Assembly Language oP No No.
CODE | Bytes Cycles
Implied NOP EA 1 2

ORA

Operation: A VM + A

PHA

ORA “OR" memory with accumulator

ORA

Operation: A +

N2CIDV
- ===
Addressing Assembly Language op No. No.
CODE Bytes Cycles
Immediate ORA #0per gs 2 2
Zero Page ORA Oper 25 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute ORA Oper #D 3 4
Absolute, X ORA Oper, X 1D 3 4%
Absolute, Y ORA Oper, Y 19 3 4x
(Indirect, X) ORA (Oper, X) @1 2 6
(Indirect), Y ORA (Oper), Y 11 s
* Add 1 on page crossing
PHA Push accumulator on stack PHA
NZ2CIDV
Addressing Assembly Language oP No. No.
CODE Bytes Cycles
Implied PHA 48 1 3

© 1980, Skyles Electric Works

Copyright

PHP

PHP Push processor status on stack

PAGE
PHP

Operation: P+ N2CIDV
Addressing Assembly Language oP No. No.
CODE | Bytes | Cycles
Implied PHP @8 1 3
PLA PLA Puil accumulator from stack PLA
Operation: A + NBECIDYV
Y ===
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes Cycles
Implied PLA 68 1 4
PI-P PLP Pull processor status from stack PLP
Operation: P ¢ N2CIDYV
From Stack
Addressing Assembly Language OP No. No.
CODE Bytes Cycles
Implied PLP 28 1 4

ROL

M or {
|?]6|5|4!3|2

- @

ROL Rotate one bit left (memory or accumulator)

ROL

Operation: NECIDV
Y VY —==
Addressing Assembly Language oP No. No.
CODE | Bytes | Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 S
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7

© 1980, Skyles Electric Works

35

PAGE 3 6

ROR ROR Rotate one bit night (memory or accurmulator) RO R

Operation: 7I6—|5—[4l312|1151J NECIDYV

' ' V=
Addressing Assembly Language OP No. No.
CODE | Bytes Cycles
Accumulator ROR A BA 1 2
Zero Page ROR Oper 66 2 5
Zero Page,X ROR Oper,X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute,X ROR Oper,X 7E 3 7
RTI RTI Return from interrupt RT'
Operation: P+ PC# NECIDV

From Stack

Addressing Assembly Language opP No. No.
CODE Bytes Cycles

Implied RTI 4@ 1 6
RTS RTS Return from subroutine RTS
Operation: PCt+, PC+ 1— PC NECIDV

Addressing Assembly Language oP No. No.

CODE Bytes Cycles

Implied RTS 6@ T 6
SBC SBC Subtract memory from accumulator with borrow SBC
Operation: A - M - C =+ A NZCIDV
Note: C = Borrow YAV —=
Addressing Assembly Language oP No. No.
CODE Bytes Cycles
Immediate SBC # COper E9 2 2
Zero Page SBC Oper E5 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SEC Oper, X FD 3 4%
Absolute, Y SBC C(Cper, Y F9 3 4%
(Indirect, X) SBC (Oper, X) El 2 6
(Indirect), Y SBC (Oper), Y Fl 2 5%

* Add 1 when page boundary is crossed.
Copyright © 1980, Skyles Electric Works

SEC

SEC Ser carry flag

PAGE
SEC

Operation: 1 + C NZ2CIDUV
i]
Addressing Assembly Language orP No. No.
CODE | Bytes Cycles
Implied SEC 38 1 2
SED SED Set decimal mode SED
Operation: 1 = D N2CIDV
—-—— o — 1 —
Addressing Assembly Language oP No. No.
CODE Bytes Cycles
Implied SED F8 1 2
SEI SEl Set interrupt disable status SH
Operation: 1 =+ I N2CIDV
—— 1 —
Addressing Assembly Language op No. No.
CODE | Bytes Cycles
Implied SEI 78 1 2
STA STA Store accumulator in memory STA
Operation: A+ M NECIDVY
Addressing Assembly Language - oP No. No.
CODE Bytes Cycles
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper), Y 91 2 6

Copyright © 1880, Skyles Electric Works

3

Copyright

PAGE 3 8
STX

Operation: X + M

STX Store index X in memory

STY

Operation:

TAX

Operation:

TAY

Operation:

15X

Operation:

NZCIDYV
Addressing Assembly Language op No. No.
CODE | Bytes | Cycles
Zero Page STX Oper 86 2
Zero Page, Y STX Oper, Y 96
Absolute STX Oper 8E 3
STY Store index Y in memory ST Y
Y=+ M N2CIDV
Addressing Assembly Language (0)4 No. No.
CODE | Bytes | Cycles
Zero Page STY Oper B4 2 3
Zero Page, X STY Oper, X 94 4
Absolute STY Oper 8C 4
TAX Transfer accumulator to index X TAX
A~ X K2CIDV
VY ————
Addressing Assexbly Language op No. No.
CODE Bytes Cycles
Implied TAX AA 1 2
TAY Transfer accumulator to index Y TAY
A=+Y NZ2CIDV
Y V===
Addressing Assembly Language op No. No.
CODE Bytes Cycles
Implied TAY AB : } 2
TSX Transfer stack pointer to index X Tsx
s+ X N2CIDYV
V===
Addressing Assembly Language op No No.
CODE | Bytes | Cycles
Implied TSX BA 1 2

© 1980, Skyles Electric Works

Copyright

PAGE 39

m TXA Transfer index X to accumulator Tx‘
Operation: X =+ A N2CIDYV
7L e——
Addressing Assembly Language oP No. No.
CODE | Bytes | Cycles
Implied TXA 8A 1 2
sz TXS Transfer index X to stack pointer sz
Operation: X =+ § N2CIDV
Addressing Assembly Language oP No. No.
CODE | Bytes Cycles
Implied TXS 9A 1 2
TYA TYA Transfer index Y to accumulator TYA
Operation: Y =+ A N2CIDV
J fosm
Addressing Assembly Language oP No. No.
CODE Bytes Cycles
Implied TYA 98 1 2

© 1980, Skyles Electric Works

PacE 4 0

Copyright © 1980, Skyles Electric Works

PAGE 41

DETAILS

Editor in Detail

The MACROTEA Editor serves several functions. First, of course,
is the entry and modification of the source text in the workspace.
Other functions include control for the hard copy display, a simple
filing system, and commands related to the assembly of the source
text.

ENTRY OF TEXT

Numbered lines are put into the MACROTEA workspace in the same
way that BASIC lines are entered. Just type the 1line number, the
text, and press RETURN. The Tongest possible Tine entry is 80 characters,
with 4 characters for the 1ine number, and 76 characters for text. The
line number may be from O to 9999.

The PET's Screen Editor may be used to change lines on the
screen, and RETURN will enter the changed line - again, just like
PET BASIC does.

In the examples below, note that the FORMAT command has been
set to CLEAR. If you want to try these, first enter:

FO CL (Return)

Examples

First, some simple text entry:

10 THIS IS AN EXAMPLE OF SOME TEXT (Return)
20 ENTRY IN MACROTEA. (Return)

PR (Return)

0010 THIS IS AN EXAMPLE OF SOME TEXT

0020 ENTRY IN MACROTEA.

//

When you entered PR, MACROTEA Tisted the 1ines stored in the
workspace. The // is MACROTEA's way of saying that it has compTeted
a command. (In this case, the PR.)

Inserting a 1ine is simple enough:

15 WITH SOME ADDITIONS (Return) (We will ignore the Returns from
PR here on.)

0010 THIS IS AN EXAMPLE OF SOME TEXT

0015 WITH SOME ADDITIONS

0020 ENTRY IN MACROTEA.

//

Copyright © 1980, Skyles Electric Works

PAGE 4 2

And deletion of one line:
20
PR
0010 THIS IS AN EXAMPLE OF SOME TEXT
?015 WITH SOME ADDITIONS
/

Use the PET's Screen Editor (That is, move the cursor & use the INST
key) to change Line 10 to:

0010 THIS IS ANOTHER EXAMPLE OF SOME TEX
T

Press Return, and the Tine will be entered. Note that up to 72
characters may be in a line.

Then there is one "ugly" - if you enter a space before a line
number, the Editor thinks you meant a command - try:

(space) 123 HELLO
'ED AT LINE 0015

With a few experiments, you will discover that:

1) A11 the PET Screen Editor features are functional, including
Quote Mode.

2) RVS and OFF will work, but the reversed field text will come
back as normal text unless it is inside quote marks.

3) Extra long 1ine numbers will only use the last four characters
in the Tine number. For example, 1234567 HELLO will be entered as
4567 HELLO.

4) Spaces are important. If you enter 10 20, you now have a Line
10 with the text:(space)?20.

Copyright © 1980, Skyles Electric Works

PAGE 4 3

ENTRY OF COMMANDS

Any line which is entered to MACROTEA without a Tine number is
seen as a command. If the command has any parameters, these must be
separated by spaces. A1l commands and parameters may be abbreviated
to two letters - for example, HARD CLEAR can be abbreviated to HA CL.

MACROTEA only looks at the first two characters in each command
or parameter - so PR, PRINT, PRUNES, PRIOR, and PREACHER are each seen

as the command PRINT.

As with text lines, any command can be edited or re-entered via
the PET's Screen Editor.

If MACROTEA cannot decipher a command, an error message will
be printed. Here are a few examples:

SMOKEY THE BEAR

!ED AT LINE 0000
GREED

IED AT LINE 0015
FORMULA ONE

Take heed - the FORMULA ONE was seen as the FO for FORMAT, and
the remainder (ONE) was ignored, and the default value (SET) was
applied instead.

Sometimes the error will come from inability to understand the
parameters that are expected:

PRINT HELLO
109 AT LINE 0000

If you Took this up, MACROTEA was expecting a string of decimal numbers
(ie, a line number). ' :

When an error occurrs in a command, the AT LINE part of the message
should be ignored as it has no meaning.

If you want to abort a command, you may either move the cursor out
of the 1ine to a blank one, or press SHIFT-Return.

If you are used to PET BASIC, the operation of MACROTEA will
seem a bit odd. Some commands, such as HARD, seem to do nothing -
their effects are seen only when some other command is executed,
such as PRINT. Another difference is the meaning of spaces. In
BASIC, spaces are usually ignored. In MACROTEA, spaces serve as
delimiters - that is, values are separated by spaces instead of
commas.

Copyright © 1980, Skyles Electric Works

PAGE 4 4

TEXT CONTROL COMMANDS

The commands in this section are concerned with manipulating
the source text stored in the workspace. In most cases these commands
can be regarded as the pure "text editor" part of MACROTEA.

A Minor Bug:

In entering commands to the Editor, you may inadvertently enter
a one letter line, like E or X or whatever. The first time you do
this, MACROTEA will behave oddly. The second and later times you do
this, MACROTEA will respond normally with the !ED error.

Get into BASIC via BR and X:

READY.
SYS 36864 (MACROTEA Cold Start)
p8@p-57FC 58p@-67FC PRpP
p8pP 5800
@ (Any letter will do)
0001Q
ATCH AREA. &*% %&%*%*¢ (some letters and graphics junk)

'ED AT LINE 0001
Q (Try it again)
IED AT LINE 0000 (Normal response)

Copyright © 1980, Skyles Electric Works

PAGE 45

AUTO (Line Number Increment)

AUTO will provide the next 1ine number in sequence after the
entry of any numbered line. The cursor will be immediately after the
AUTO generated 1ine number.

If the next number in sequence is larger than 9999, the number
"wraps around" through 0000.

To turn AUTO off, enter either AUTO @ or just AUTO.

To "escape" a line number generated by AUTO, use SHIFT-Return.
Or, you can type two slashes (//) followed by a normal Return.
Examples:

Clear the workspace via CL, and then enter:
AUTO 10

15 THIS IS ONE WAY OF GETTING MY NUMBERS RIGHT.
0025

The M indicates the cursor. AUTO used the 1ine number provided, 15,
and added the interval, 10, to get the new 1ine number, 25.

We can continue with this:
" 0025 SO I AM TOLD BY THE ILLUSTRIOUS
0035 MACROTEA!
0045 (SHIFT-Return)
M
If I continue with some other number, AUTO follows along:

16 THE MORE THE MERRIER
0026M

You will notice that AUTO takes no heed of any previously entered
text. If you are inserting text with AUTO, bewares of interleaving
lines or obliterating lines.

Turning AUTO off is simple enough:

AUTO

22 HELLO THERE
L]

If you give AUTO a parameter, it expects a Tine number:
AUTO OFF
109 AT LINE 0022

Copyright © 1980, Skyles Electric Works

PAGE 46

AUTO doesn't care if you enter text with the line numbers, which provides
one way to delete text.

AU 5
10

0015
0020KW

As a final touch, observe the wrap-around:
AUTO 100
9850 ROW, ROW YOUR BOAT
9950 MERRILY, MERRILY ALONG

0050 THE STREAM
01504

Copyright © 1980, Skyles Electric Works

PAGE 4 7

NUMBER (Starting Line Number) (Line Number Increment)
T e e e e e e T e

NUMBER renumbers the text lines in the workspace. If a new
1ine number will be more than 9999, NUMBER will stop with an
error message - and leave the text partially renumbered.

If NUMBER gives you a messy result, try NUMBER 0 10 or
NUMBER 0 1. This will restore your workspace to a reasonable
set of sequential Tine numbers.

To understand NUMBER, see the procedure below:

1) Using the Starting Line Number, begin at the start of the
workspace and find a line equal to or larger than the Starting Line
Number. (If you don't find one, you are done.)

2) Add the Line Number Increment to the Starting Line Number's
value and replace the current line's number. Go through the rest of
the workspace, adding the Line Number Increment each time.

3) If no Line Number Increment is provided, use an increment of
zero. If the new line number is more than 9999, print an error
message and quit, leaving the text file partially renumbered.

The best way to follow all this is with some examples:

Examples:

Suppose we have this in the workspace:

PR

0010 JUST ON TIME, THE KING AND HIS
0020 GRAND DUKE ARRIVED AT THE AIRPORT
0030 IN QUITO, PERU.

0040 AN IMPORTANT MEETING WAS ABOUT
0050 TO BEGIN WITH THE INDIANS OF

0060 THE HIGH ANDES.

(Notefihat FORMAT was CLEARed via FO CL.)
Now, let's see NUMBER in action:
NU 10 5
PR
0015 JUST ON TIME, THE KING AND HIS

0020 GRAND DUKE ARRIVED AT THE AIRPORT
0025 IN QUITO, PERU.

0030 (etc)....
0035 (etc)....
(5 [9): 1 (etc)....

Copyright © 1980, Skyles Electric Works

PAGE 4 8

Note that the first line number ended up as 15. To make this more
clear, try:

NU 27 10

QOYE srzenss (You know what this text is,)
D020 iisenis (and I am lazy.)

If you look at the procedure, the first line equal to or larger than
27 was Line 30. The increment, 10, was added to 27 to give 37, and
so Line 30 was renumbered to 37. The following lines then became

47 and 57.

There is a reason to this madness - if you have a long text in
the workspace, you can by successive applications of NUMBER eventually
get the text into a series of blocks, like:

1000

1010

1020

2000

2010

2020
As an exercise, make the example text turn into this form!

Now, to make NUMBER crash and how to get back home again:

NU 10 10

NU 45 4000
110 AT LINE 2045

Copyright © 1980, Skyles Electric Works

PAGE 4 9

As you can see, the last line didn't work out too well. Since NUMBER
only changes line numbers, the order of the lines of text isn't changed.
(If you move the cursor into Line 2045, and press Return, you will

now have a second Line 2045.)

Recovery is simple - just do a NU 10 10 and things are restored.
(It is safest to use NU O 10 or NU 0 1)

Another problem appears if you don't provide a Line Number Increment.
Try this one:

NU 12

Can you see the way out of this one?
NUMBER expects at least one parameter, or you will get an error:
NUMBER
111 AT LINE 0000

Note: The commands COPY and MOVE will generate blocks of lines with
the same number in the workspace. Use NUMBER to straighten things out.

Copyright © 1980, Skyles Electric Works

pace 50

COPY (Destination Line Number) (Start Line Number) (End Line Number)

COPY makes a copy of the lines in the workspace from the Start
Line Number to the End Line Number. These lines are placed in the text
Just following the Destination Line Number. A11 Copied lines will be
given the Destination Line Number.

If the Start Line Number and the End Line Number are out of order,
COPY will copy one 1ine - if the line's number matches the Start Line
Number. If the End Line Number is omitted, the same thing will happen.

Use NUMBER to re-order the lines after COPY.

Examples:
Suppose the following is in the workspace. (And FORMAT is CLEAR.)

PR

0010 LINE TEN
0020 LINE TWENTY
0030 LINE THIRTY
0040 LINE FORTY
0050 LINE FIFTY
0060 LINE SIXTY

//
Now, make a copy of Lines 10 to 3C and put it after Line 60:

CO 60 10 30

PR

0010 LINE TEN
0020 LINE THWENTY
0030 LINE THIRTY
0040 LINE FORTY
0050 LINE FIFTY
0060 LINE SIXTY
0060 LINE TEN
0060 LINE TWENTY
0060 LINE THIRTY

Just to see what happens, try a copy of Lines 40 to 60 starting at

CO 25 40 60

PR

0010 LINE TEN
0020 LINE TWENTY
0025 LINE FORTY
0025 LINE FIFTY
0025 LINE SIXTY
0030 LINE THIRTY
0040 LINE FORTY
0050 LINE FIFTY
0060 LINE SIXTY
0060 LINE TEN
0060 LINE THWENTY
0060 LINE THIRTY

Copyright © 1980, Skyles Electric Works

PAGE 51

First, the copied lines were numbered according to the Destination Line
Number. Second, once COPY saw a Line 60, it stopped.

NUMBER can be used to clean this up somewhat (Do it - the next
example assumes you used NU 0 10.)

COPY needs at least two parameters -
CoPY

111 AT LINE 0000

COPY 1

111 AT LINE 0000

COPY SMOKEY THE BEAR

109 AT LINE 0000

and that the parameters be numbers.

If you don't provide an End Line Number, or there aren't any numbers
in the area you are copying, COPY won't do anything. With the workspace
NUMBERed by 10s (ie, 10 20 30 etc), try:

CO 25 55

PR
(nothing happened, so I won't show it to you)

C0 25 31 39

PR
(ditto - just the same old 10, 20, etc.)

However, be careful if a line is present at the Start Line Number:
CO 15 60

PR

0010 LINE TEN

0015 LINE THIRTY

0020 LINE TWENTY

0030 LINE FORTY
PR -3 of ot

If 1ines with the same number are in the ones to be copied, they will
come along too. Try this sequence:

CL (Removes the text from the workspace)
10 HELLO

20 THERE
CO 510 20

Copyright © 1980, Skyles Electric Works

PAGE 52

PR

0005
0005
0010
0020

/l
co 4

PR

0004
0004
0004
0005
0005
0010
0020

COPY will not tolerate an attempt to COPY lines to a destination
within the lines being copied.

Assume we have:

0010
0020
0030

C0 1510 20

HELLO
THERE
HELLO
THERE

4 15

HELLO
THERE
HELLO
HELLO
THERE
HELLO
THERE

J
K
L

112 AT LINE 0015

The range, Lines 10 to 20, include the destination, Line 15.

Challenge: Suppose my text looks like this:

0000 THIS IS THE FIRST LINE
0001 THIS IS THE SECOND LINE
0002 THIS IS THE THIRD LINE
0003 THIS SHOULD BE THE ZERO LINE

How do you COPY Line 3 so that it is BEFORE Line 0?7 (Hint - you have
to do something else first!)

Another Challenge: Given the text below, how do you use COPY
(in a minimum number of steps) to eventually get the !OF AT LINE xxxx
error? (ie, you are out of memory.)

100 HELLO

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 5 3

MOVE (Destination Line Number) (Start Line Number) (End Line Number)
R e e e e e e e

MOVE takes the text from the Start Line Number to the End Line
Number and places it following the Destination Line Number. The MOVEd
lines are given the Destination Line Number.

If the Start Line Number and the End Line Number are out of order,
MOVE will copy one 1ine - if the line's number matches the Start Line
Number. If the End Line Number is omitted, the same thing will happen.

Use NUMBER to re-order the lines after MOVE.

Examples:

First, take a look at the examples for COPY. MOVE works the same
way - but the lines are moved, not copied.

Let's start with:

PR

0010 WOMBATS MAKE NICE
0020 FRIENDS IF YOU

0030 TAKE CARE TO PUT THEM
0040 INTO STRONG CAGES

Let's use MOVE to reverse the order of all these lines.
MO 50 10 20

PR

0030 TAKE CARE TO PUT THEM
0040 INTO STRONG CAGES
0050 WOMBATS MAKE NICE
0050 FRIENDS IF YOU

MO 20 40

PR

0020 INTO STRONG CAGES
0030 TAKE CARE TO PUT THEM
0050 WOMBATS MAKE NICE
0050 FRIENDS IF YOU

MO 60 50

PR

0020 INTO STRONG CAGES
0030 TAKE CARE TO PUT THEM
0050 FRIENDS IF YQOU

0060 WOMBATS MAKE NICE

© 1980, Skyles Electric Works

PAGE 5 4

MOVE will fail in the same way that COPY does:
MOVE

I11 AT LINE 0000

MOVE 12

!11 AT LINE 0000
MOVE THE EARTH
109 AT LINE 0000

NU 0 10 (We assume you still have the course on Wombats in the
workspace.)

MO 20 10 30
112 AT LINE 0020

NOTE: If you are editing a large text file, the use of NUMBER, MOVE, and
COPY can play havoc with any hardcopy 1isting you may have. A T1ittle
planning & pencil and paper will help.

Copyright © 1980, Skyles Electric Works

PAGE 55

DELETE (Start Line Number) (End Line Number)

DELETE removes the 1ines from the Start Line Number to the End
Line Number in the workspace. If the Start Line Number only is given,
Delete will remove only that single line.

No Tines will be removed if there aren't any with the indicated
numbers 1in the workspace.

To understand DELETE, see the sequence below:

1) Scan the workspace until the Start Line Number (or a larger
Tine number) is found.

2) Delete lines until a line with a Tine number equal to or
larger than the End Line Number is found.

3) If the workspace line's number equals the End Line Number,
delete this line too.

4) Finished.

Examples:

DELETE works very simply - provided the line numbers in the
workspace are in order and each line number is unique. (After COPY or
MOVE, DELETE acts a bit strangely.)

If we have:

PR

0010 ONE
0020 TWO
0030 THREE
0040 FOUR
0050 FIVE
0060 SIX
//

Removal of Lines 30 to 50 is simple:
DE 30 50
PR
0010 ONE
0020 TWO
0060 SIX
Removal of one line is also easy:
DE 10
PR

0020 TWO
0060 SIX

Copyright © 1980, Skyles Electric Works

PAGE 56

If the Tine isn't there, DELETE won't remove it:
DE 40

PR
0020 TWO
0060 SIX

Check for yourself that DELETE 60 1000 and DELETE 0 25 will work
as expected.

DELETE 1likes to see at least one line number:
DE

111 AT LINE 0010

DE FOO

109 AT LINE 0000

If 1ine numbers aren't unique, DELETE will work a little
strangely. (You are advised to NUMBER your text first!) Here are
some examples:

Suppose:

PR

0005 HELLO
0005 HELLO
0005 HELLO
0010 HELLO
0010 HELLO
0010 HELLO
0020 HELLO
0020 HELLO
0020 HELLO

(How to make this text? Start with
100 HELLO 1, 110 HELLO 2, etc. Then
use MOVE.)

WO~ why —

Now try a DELETE 20
DE 20

PR

0005 HELLO
0005 HELLO
0005 HELLO
0010 HELLO
0010 HELLO
0010 HELLO
0020 HELLO
0020 HELLO

oo B wro —

DELETE removed the first Line 20 it found.

Copyright © 1980, Skyles Electric Works

PAGE 57

Now try:
DE 20 20

PR

0005 HELLO 1
0005 HELLO 2
0005 HELLO 3
0010 HELLO 4
0010 HELLO 5
0010 HELLO 6

Here, DELETE removed the first Line 20 (HELLO 8) and then the second
Line 20 (HELLO 9).

Then there's:
DE 5 10
PR -
0010 HELLO 5
0010 HELLO 6
Here, DELETE removed all of the Line 5's and the first Line 10.

MORAL TO THIS LESSON: Make your text area have reasonable line numbers
before you go and DELETE something.

Copyright © 1980, Skyles Electric Works

PAGE 5 8

CLEAR
E=Emy

CLEAR deletes all of the lines in your workspace. There's no
second chance, so be sure of what you are doing.

Example:

Suppose:
PR
0010 WANT TO SEE THE FASTEST

0020 DELETE IN THE WEST?
0030 WANT TO SEE IT AGAIN?

CL

PR
/!

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 59

FIND (Delim)(Search String)(Delim)(Don't Care Char)
(Print Control)(Start Line Number)(End Line Number)

FIND searches for a specific string w1th1n the workspace and
indicates where it was found.

The sequence (Delim)(Search String)(Delim) specifies the
string being looked for. For example, if you are looking for
HERE IS, the sequence can be *HERE IS* or /HERE IS/ or
AHERE ISA.

The character % placed in the Search String means that the
character in this position is not important and is to be ignored.
This is a "don't care character." For example, if you were looking
for F%X, FIND would locate FOX, FIX, FAX, FXX, etc.

If you need to change the Don't Care Character, place the

 sequence %(char) after the second Delimiter. If $ were to be the

Don't Care Character, a typical command would look like this:
FIND *F$X* %%

If the character # is placed in the FIND command, the located
1ines will not be printed on the screen.

To FIND over a range of line numbers, enter the Start Line Number
and the End Line Number.

When FIND locates a line, the line is printed on the screen

After all of the workspace has been examined, FIND reports the
number of occurrences of the Search String.

The Examples will tell you about these features in more detail.

Examples:

FIND isn't as formidable as the description above might seem.
In most cases, you will be using the simpler variations.

Suppose the text in the workspace is:

0010 THERE ONCE WAS A PRETTY LITTLE
0020 COMPUTER. HER CRT WAS ROSY AND
0030 HER KEYBOARD WAS A LUSCIOUS PEACH
0040 HUE. WHEN SHE RAN HER PROGRAMS,
0050 SHE WOULD USUALLY RUN THEM WITH
0060 GRACE AND CORRECTNESS. AH, BUT IF
0070 SHE SAW A BUG, SHE WOULD SCREAM
0080 AND BE HORRID!

Let's first explore finding strings.

© 1980, Skyles Electric Works

PAGE 60

FIND *PRETTY* .
0010 THERE ONCE WAS A PRETTY LITTLE (We will ignore the
//0001 ' 40 char screen width.)

So what does all this mean. First, to look for PRETTY, it must be
enclosed in some character that isn't in the Search String - so the
asterisk (*) was used. Second, one line, 0010, contains the word
PRETTY - and FIND printed the line.

Since FIND prints the 1ine on the screen in the same way that
PRINT does, you can move the cursor up into the line and edit the

line with the PET's Screen Editor. This is a nice method of editing
lines which are similar but need different changes.

The last part, //0001, tells (in Decimal) the number of times
. PRETTY was found.

Now for some variations on this theme:

FIND ZPRETTYZ
FIND !A PRETTY!

will give the same result as above. (Try it and see.)
But be careful - not all characters will work as Delimiters:

FIND (PRETTY)
115 AT LINE 0080
Of course, the Delimter must be the same at both ends:
FIND *PRETTY!
115 AT LINE 0000

Each instance of a located Search String will result in a line being
displayed:

FIND *WAS*

0010 THERE ONCE WAS A PRETTY LITTLE
0020 COMPUTER. HER CRT WAS ROSY AND
0030 HER KEYBOARD WAS A LUSCIOUS PEACH
//0003

This 1is true for repetitions in one line as well:
FIND 'TT!

0010 THERE ONCE WAS A PRETTY LITTLE
0010 THERE ONCE WAS A PRETTY LITTLE

Copyright © 1980, Skyles Electric Works

PAGE 61

For fun, I Teave it to you to see what happens with:
FIND *E*

To Tocate words, suffixes or prefixes, include a space in your
Search String. Try this sequence:

FIND *HE*
(You will find 10 'hits' for *HE*.)

FIND *HE *
(Now it is 4 'hits'.)

FIND * HE*
(Three this time.)

- This trick won't work for words at the end of a line:

FI * IF *
/70000

(IF is the last word in Line 0060.)

The character '%' is a Don't Care Character if you put it into
a Search String. Letters in this position will always match.

FIND *R%N*
0040 HUE. WHEN SHE RAN HER PROGRAMS,
0050 SHE WOULD USUALLY RUN THEM WITH

Here, Line 40 has the word RAN, and Line 50 has the word RUN. The
central letter was ignored.

If you really want fun, try:
FI *%*

For the rare case where you want to search for the % itself, the
Don't Care Character can be changed by putting %(char) after the
Search String:

FIND *RUN* %U
This gives the same thing that FIND *R%N* did.

To look for a Search String in a group of lines, just provide
the expected range of 1line numbers:

FI *HE* 10 20

0010 THERE ONCE WAS A PRETTY LITTLE
0020 COMPUTER. HER CRT WAS ROSY AND
/70002

FIND *HE* 20
0020 COMPUTER. HER CRT WAS ROSY AND

Copyright © 1980, Skyles Electric Works

PAGE 6 2

FI *E* 20
0020 COMPUTER. HER CRT WAS ROSY AND
0020 COMPUTER. HER CRT WAS ROSY AND

FI *HE* 55
//0000

The last one indicated a line that doesn't exist - so the
search failed.

I leave it up to you to discover what happens with workspaces
after COPY and MOVE. (I suspect it works 1ike PRINT does.)

Sometimes it is handy to just count the number of 'hits' and
not to 1ist them. The character '#' placed after the Search String
will accomplish this:

FIND *HE* #
/10010

Here's a neat trick:

FI %! #
//0241]

This means to find all occurrences of any character - so every letter
in the workspace is counted - 0241 is the number of characters in

the workspace.

This Print Control character must be put after the Don't Care
Character if you are using both options at once:

FIND *RUN* %U #
//0002

FIND *RUN* # %U
109 AT LINE 0000

A1l of this can be used with Tine numbers as well - just be sure the
Start and End Line Numbers come after everything else.

So - you've just learned the hardest command in MACROTEA.
(Except for EDIT, which comes next!)

Copyright © 1980, Skyles Electric Works

PAGE 6 3

EDIT (Delim)(Search String)(Delim)(Replace String)(Don't Care Char)
(Print Control/Subcommands)(Start Line Number)
(End Line Number)

EDIT searches the workspace for anny occurrences of the Search
String, and replaces the Search Strings with the Replace String.
The Delimiter is any character that doesn't appear in the Search or
Replace Strings.

The Don't Care Char will match any character in the workspace
that ;fits" in the Search String. (Just 1ike the Don't Care Char in
FIND.

To suppress printing of any altered lines, use # for the Print
Control. If # is not present, each 1ine that is altered will be
printed as it was before any changes were made.

If the asterisk * is used, EDIT will print each 1ine in which
the Search String is found, and then prompt you with another asterisk.
You may now enter a Sub-Command, from one of the list below:

A - Change the Found String to the Replace String
and continue. _

- Delete the line entirely, and then continue.

Don't change the Feand String, and continue.

- Skip to the next 1ine and continue.

- Quit - and return to Editor Command Mode.

>xwnm=0o
1

The Sub-Commands permit selective EDIT of the workspace.

To EDIT over a range of lines, provide the Start Line Number
and the End Line Number. ;

Note that the Print Control/Sub-Commands are mutually exclusive.
You can apply one or the other, but not both.

Examples:

As with FIND, EDIT will usually be used in its simpler forms.
To get started, here is a rather concocted workspace:

PR
0010 THEY HAD TO GLOWER AT THE POWER

0020 OF THE TOWER AS IT GOT LOWER AND
0030 LOWER TO CRUSH A FLOWER.

If you think that's strange, just wait.....

Copyright © 1980, Skyles Electric Works

PAGE © 4

The simplest EDIT is the most powerful - it simply changes all
occurrences of the Search String to the Replace String. Here goes:

EDIT *WER*TERRA*

0010 THEY HAD TO GLOWER AT THE POWER
0010 THEY HAD TO GLOTERRA AT THE POWER
0020 OF THE TOWER AS IT GOT LOWER AND
0020 OF THE TOTERRA AS IT GOT LOWER AND
0030 LOWER TO CRUSH A FLOWER.

0020 LOTERRA TO CRUSH A FLOWER.

//0006

As most of this was described in FIND, we will be brief here.

EDIT 1ists each Tine each time the Search String is found. Then the
change is made.

The display is the same as FIND produces. You can move the cursor
up into the lines and change them via the PET's Screen Editor if needs
be. HOWEVER, doing so will re-enter the lines as displayed, and the
EDIT changes will not be incorporated. In short, what you see is what you
get with the Screen Editor.

Since each line has two occurrences of WER, each line is shown
twice. The first time no changes are present, and the second time
shows the first change is already in effect.

The //0006 tells how many times the Search String was found.
Here is the changed result of the above EDIT:

PR

0010 THEY HAD TO GLOTERRA AS THE POTERRA
0020 OF THE TOTERRA AS IT GOT LOTERRA AND
0030 LOTERRA TO CRUSH A FLOTERRA.

The Search String can use the % character as a Don't Care Character.
If % is put into the Replace String, it will end up in the text. Here
goes:

EDIT *%T*Z%P*

(Do it yourself to see the EDIT printout.)
We end up with:

PR

0010Z%PHEY HADZ%P0O GLZ%PERRA Z%PZ%PHE PZ%PERRA

0020 OFZ%PHEZ%PZ%PERRA AS Z%P GZ%P LZ%PERRA AND

0030 LZ%PERRAZ%PO CRUSH A FLZZPERRA.
The Search String of %T effectively found every letter T in the
text. The Replace String was Z%P - and the % is not a Don't Care
Char in the Replace String.

There are two ways to get our text back:

EDIT .Z%P.TO.

EDIT .Z%P.TO. %!

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 65

In the first case, it is unlikely that some other form of Z?P exists
so this is reasonably safe. The second case makes completely sure by
changing the Don't Care Char to one that isn't in the text. Note that
a different delimiter is used, the peroid.

Here's the result:

PR

O0OT10TOHEY HADTOO GLTOERRA TOTOHE PTOERRA
0020 OFTOHETOTOERRA AS TO GTO LTOERRA AND
0030 LTOERRA TOO CRUSH A FLTOERRA.

the original text cannot be restored due to the use of % in the
Search String.

Here is one attempt:

EDIT :TO:T: #
//0015

Here the # suppressed the Tisting of a Tine for each occurrence of the
Search String. :

After application of ED :TERRA:OWER:, we end up with:

PR

0010THEY HADTO GLOWER TTHE POWER
0020 OFTHETOWER AS T GT LOWER AND
0030 LOWERTO CRUSH A FLOWER.

EDIT may be used to delete material by making the Replace String a
null:

ED ?THE?? #

//0003

PR

0010Y HAD TO GLOWER T POWER
0020 OFTOWER AS T GT LOWER AND
0030 LOWERTO CRUSH A FLOWER.

But you can't get away with:
ED **H* (Attempting a Null Search String)
115 AT LINE 0030

You can easily verify that EDIT will change a given range of lines
if you supply the Start and End Line Numbers. One safe way to do this
is to specify a non-substitution:

EDIT :T:T: 10 20

© 1980, Skyles Electric Works

PAGE 66

There are some cases where EDIT will make a Tine longer. Suppose
the workspace contains:

PR
0010 XXXXXXXXXX
0020 XXXXXXXXXX

EDIT *X*YY*
(junk)

PR
0010 YYYYYYYYYYYYYYYYYYYY
0020 YYYYYYYYYYYYYYYYYYYY

The question is, can this go on forever?
EDIT *Y*ABCDEF*
(more junk)

PR

0010 ABCDEFABCDEFABCDEFABCDEFABCDEFABCDE
FABCDEFABCDEFABCDEFABCDEFABCDEFABCDEFAB
0020 ABCDEFABCDEFABCDEFABCDEFABCDEFABCDE
FABCDEFABCDEFABCDEFABCDEFABCDEFABCDEFAB

No, EDIT will 1imit a line to 72 characters - if the insertion goes
beyond, the extra characters are thrown away.

Bewares of using EDIT if your text has lines with the same line
number - EDIT will go into an infinite loop! To escape, press the DEL
key .

CL

10 HELLO

20 HELLO

CO 30 10 20

PR
0010 HELLO
0020 HELLO
0030 HELLO
0030 HELLO
/!

EDIT *HELLO*THERE*
(poof! EDIT gets stuck in Line 30) Press DEL to get out.

PR
00710 THERE
0020 THERE
0030 THERE
0030 HELLO
//

Copyright © 1980, Skyles Electric Works

PAGE 67

Sub-Command Examples:

EDIT will stop after each Found Str1ng if you follow the
Replace String with an asterisk:

EDIT .HELLO.THERE. * is an examp]e.

You can then enter a Sub-Command to decide what to do with this
particular case. Let's go back to the original text and see
how this works:

PR

0010 THEY HAD TO GLOWER AT THE POWER
0020 OF THE TOWER AS IT GOT LOWER AND
0030 LOWER TO CRUSH A FLOWER.

EDIT *OWER*AMBLE* *
0010 THEY HAD TO GLOWER AT THE POWER
*

EDIT found the first OWER (At GLOWER) and printed the line. Now EDIT
is waiting for you to select an action.

*A
0010 THEY HAD TO GLAMBLE AT THE POWER
*

The Sub-Command A tells EDIT to make the change for this instance of
the Found String. If you want to ignore the Found String, use M.

*M

0020 OF THE TOWER AS IT GOT LOWER AND
Gt

0030 LOWER TO CRUSH A FLOWER.

The Sub-Command S told EDIT to skip this 1ine - so the second instance
of OWER (in LOWER) was ignored - and we are now at Line 30.

*D

//0004

PR

0010 THEY HAD TO GLAMBLE AT THE POWER

0020 OF THE TOWER AS IT GOT LOWER AND
//

The D Sub-Command deletes the current line. Naturally any preceding
changes in a deleted line will be lost. When EDIT was finished, four
Found Strings were detected.

ED T *
0010 THEY HAD TO GLAMBLE AT THE POWER
*X

//0001
The final Sub-Command is X to exit EDIT.

Copyright © 1980, Skyles Electric Works

PAGE 6 8

You may include Start and End Line Numbers with the Sub-Commands
form of EDIT. This will not be illustrated here in any detail. One
example:

EPIT .T.TEETH. * 10 20
This will do the Sub-Command form of EDIT for Lines 10 through 20.

Copyright © 1880, Skyles Electric Works

PAGE 69

DISPLAY OF THE WORKSPACE

This group of Editor Commands is concerned with the presentation
of the text in the workspace to the PET screen or as listed to a
printer.

If you are using a printer with MacroTeA (it is really quite
convenient), there are some ritual items that need observance -
or the Gods of MacroTeA will frown upon you!

MacroTeA Printer Rituals:

1) Thy Printer must be an IEEE-488 compatible device.
2) Thy Printer Device Number must be 4.(or see below)

3) If Thy Printer needs to be fed unusual characters,
do it in this manner:

a. Get into BASIC.

b. OPEN 1, (Printer's Device Number)
c. PRINT#1, (Set up characters)

d. Now start MacroTeA.

For example, with a COMPRINT which needs to be started in
non-paginate mode to prevent flying form-feeds in the MacroTeA
listings. The ritual becomes:

OPEN 4,4
PRINT#4, CHR$(30)"HELLO THERE"
SYS36864. (cold start)

With a Skyles PAL or PAL 80 printer, no ritual needs to be done.

For a BASE2 printer, it has been reported to me by Ltjg. P.J.
Rovero that the best ritual is:

OPEN 5,4: Print#5, CHR$(27); CHRS$(55);
CHR$(27); CHR$(66); CHR$(27); CHR$(68):
SYS36998 (warm start)

The Printer Ritual is handy for checking if the printer is operating
correctly.

The Printer device number may be changed by "POKE32417,(dev. #)"
in BASIC or by placing the device # in $7EAl from the monitor. Remem-
ber that the device number is reset to 4 on every cold start of Macro-
teA.

Copyright 1982 éky]es Electric Works 8/14/82

(c)1980 Skyles Electric Works
6/10/80

pacEe /7 0

PRINT (Start Line Number)(End Line Number)

PRINT prints the contents of the workspace from the Start Line Number
to the End Line Number. If only one line number is given, only the specified
line will be printed.

If no Tine numbers are provided, PRINT will 1ist the entire workspace.

The format of PRINT's output is modified by the commands FORMAT and
MANUSCRIPT.

Examples:
To see what's in the workspace, use PRINT without a 1ine number:

PRINT

0010 ONE

0020 TIME

0030 TOO

0040 MANY

0050 FOR

0060 IMAGINATIVE
0070 EXAMPLES

//

PRINT may be abbreviated to PR. Here is a listing of Line 30:

PR 30
0030 TOO
g

A range of lines is easily specified:

PR 15 45
0020 TIME
0030 TOO
0040 MANY

/!

PR 0 (1ine) and PR (1ine) 9999 will 1ist from the start of the workspace
to the specified 1ine number, and from the Tine number to the end of the
workspace, respectively.

(c)1980 Skyles Electric Works
6/10/80

pace 71

If COPY or MOVE have been applied and some line numbers are
identical, PRINT acts like this:

MO 15 50 70

PR

0010 ONE

0015 FOR

0015 IMAGINATIVE
0015 EXAMPLES
0020 TIME

0030 TOO

0040 MANY

//

PR 10 15

0010 ONE

0015 FOR

0015 IMAGINATIVE
0015 EXAMPLES

/1

PR 15 20

0015 FOR

0015 IMAGINATIVE
0015 EXAMPLES
0020 TIME

//

But beware of:

PRINT 15
0015 FOR

/1

PRINT listed the first Line 15 it found. PR 15 15 will Tist all
of the Line 15's.

In many of the examples for other commands, PRINT is used to show the
results. The // at the end of a 1isting will ofter be omitted.

(c)1980 Skyles Electric Works
6/10/80

PAGE / 2

HARD (SET/CLEAR/PAGE) (Start Page Number)
VS S,

HARD tells MACROTEA to output both to the PET Screen and to a
printer. The options are:

SET - A1l of MACROTEA's output will be sent to the printer.
When SET, MACROTEA will keep track of the number of lines
printed, and will paginate the output on a basis of
a 66 Tine page, with 58 Tines of output per page.

None of your input to MACROTEA will appear on the printer.
CLEAR - This disables the SET mode.

PAGE - If HARD is SET, the command HARD PAGE will send 66 line
feed character to the printer.

The Start Page Number may be given to any variation of HARD. The
current page number will be updated to the new value. Page numbers
may be from 00 to 99.

PAGE 7 3

FORMAT (SET/CLEAR)

FORMAT is used to tabulate MACROTEA's output when PRINT or
ASSEMBLE produces a listing of the workspace. The SET option forces
tabulations (Sent as spaces to the printer) to provide a readable
listing of assembler code. The CLEAR option will output the workspace
as it is stored internally.

If MANUSCRIPT is used to remove 1line numbers in PRINT, FORMAT will
remain active. In an ASSEMBLE 1isting, FORMAT controls the output after
the 1ine number. FORMAT SET/CLEAR does not affect the memory usage -
only the form of the output.

FORMAT CLEAR is the default when MACROTEA starts.

If you perform an assembly, FORMAT will become SET and will
remain that way until you CLEAR it.

Examples:

First, let's enter a very short text to help see how FORMAT
works:

CL

1Z123456789012345678901234567890
2LABEL LDA #FOO ;COMMENT

FO CL

PR
00012123456789012345678901234567890
OO002LABEL LDA #FOO ;COMMENT

//

Line 1 is intended to help keep track of where the columns end up.
Line 2 is an example of some assembly code.

When FORMAT is CLEAR, the text is printed in just the same way it
was entered.

FORMAT SET

PRINT
00012123456789012345678901234567890
0002LABEL LDA #F0O ;COMMENT
//

The label field is not tabulated. The Op-Code, which is always assumed

to start after the first space, is moved to begin at column 10. Comments,
which are preceded with semicolons, are moved to the next available tab
stop, which is at column 34.

You can experiment with other combinations to find where the tab
columns are.

Copyright © 1980, Skyles Electric Works

PAGE 7 4

MANUSCRIPT (SET/CLEARz

If MANUSCRIPT is SET, PRINT will not display the Tine numbers.
This permits the Editor to be used for normal text, such as letters.
If MANUSCRIPT is CLEAR, PRINT will display the 1ine numbers in the
workspace.

Examples:
Suppose that:

CL

FO CL

10 HERE IS A TEST OF

20 THE MANUSCRIPT FEATURE
30 OF MACROTEA.

PR

0010 HERE IS A TEST OF

0020 THE MANUSCRIPT FEATURE
??30 OF MACROTEA.

Now ,
MA SET

PR

HERE IS A TEST OF

THE MANUSCRIPT FEATURE
OF MACROTEA.

//

When SET, MANUSCRIPT removes the line numbers. If you leave FORMAT SET,
the tabulation rules will be in effect:

FORMAT SET

PR
HERE IS A TEST OF
THE MANUSCRIPT FEATURE
OF MACROTEA.

//

Copyright © 1980, Skyles Electric Works

PAGE 7 5

FILES CONTROL COMMANDS

Once a text is completely edited and ready for use, there remains
the problem of transferring the information to some other medium, such
as a disc or a cassette tape. The commands in this section are mostly
concerned with "Files" - or copies of data present on a tape or a
diskette.

One unique command, SET, is used to control the allocation of
memory in the PET's RAM for the workspace and Symbol table,

Copyright © 1980, Skyles Electric Works

PAGE /7 6

SET (Start of Workspace)(End of Workspace)(Start of Symbol Table)
(End of Symbol Table)

The SET command rearranges the MACROTEA memory map for use of
the PET's RAM memory. If the parameters are provided, SET rearranges
the memory map and then reports the result. If no parameters are given,
SET reports the current memory map pointers.

When parameters are entered for SET, they are assumed to be in
decimal. If you wish to enter a parameter as a hexadecimal number,
precede the number with $. (% permits entry as a binary number.)
SET reports its results in hexadecimal.

When using SET all five address parameters must be entered.

This odd behavior comes from the convention that much machine
language code and nearly all addresses are referred to in hexadecimal
and not in decimal. In SET, the MACROTEA Assembler's expression analyser
is used to let you make entries in hex, and the report is in hex to
follow the convention. All other Editor commands will only accept
decimal values for their parameters.

No checks of any kind are made for the SET parameters. If care is
not taken, the memory map pointers can be given absurd values.

Examples:

When MACROTEA is started, either by the cold or warm start addresses,
an implicit SET is performed to report to you the memory map pointers.
With the PET in BASIC mode,

SYS 36864

p8PP-57FC 58pP-67FC PPRP
p8pp 5800

This report tells you that:

Workspace: p8pp to 5800 (About 20K characters)
Symbol Table: 5800 to 6809 (About 4K ‘characters)

Actually, SET subtracts 3 from the upper values in the report - so the

workspace is from 0800 to 57FF in reality. When parameters are given

for SET, you will have to subtract 3 from the value you really want.
The second T1ine of the report says that:

Free Area in Workspace: (800 to 5800

Copyright 1982 Skyles Electric Works 8/14/82

(c)1980 Skyles Electric Works
5/22/80

pacE 77

If a line of text is entered, and SET applied, the report will change
a little:

10 THIS IS SOME LINE OR ANOTHER
SET

0800- 57FC 580p-67FC PP0OQ
081F 5809

Each line of text in the workspace takes 2 bytes for the Tine number,

and 1 byte for each character in the 1ine. The Line 10 takes up locations
0800 through 081E. The free area is from 081F to 58¢p (The report is

too optimistic by one byte here.)

If you want to, try BREAK - and then X from the monitor. Then do
a SYS 36998 to the warm start, and MACROTEA will provide you with the
same report as above.

You will notice that this report is the same one which MACROTEA
gives when it is started by either starting address.

The 0000 on the right edge of the SET report is an artifact
from MACROTEA's ancestor, the Relocating Assembler by Carl Moser.
It has no meaning for MACROTEA users. (If you must know why, see the
DIGRESSION in the section on the .DI, .SE, and .SI pseudo-ops
(Page 125) in the Assembler.)

When using SET all five address parameters must be entered.

. You will use SET to configure
MACROTEA for your memory requirements. Let's see how this works.
First, let's make the workspace start at $0400 (Hexadecimal):

SET $0400 $1BFC $1CpP $1FFC 0

0400-1BFC 1CO00-1FFC 0000
0400 1co00

Now Tet's set the workspace using decimal
SET command:

SET 2048 7164 7168 8188 0

0800-1BFC 1C00-1FFC 0000
0800 1cC00

(c)1980 Skyles Electric Works
5/22/80

PAGE /7 8

For the die-hard, % will specify a binary number in SET. Have fun!

PR
//

Note that when you perform a SET, the workspace will be cleared. SET
should be performed first when MACROTEA is turned on.

SET will accept parameters and change the memory pointers accordingly.
Bewares! SET does not check to see if the parameters make any sense:

SE 321 456 333 122 8888

0141-01C8 014D-007A 22B8
0141 014D

As you can see, the text goes into the sacred first 1K of the PET's
memory, and the Symbol Table overlaps the text area. (ugh)

To recover from this awful doom,
SE $8pp $57FC $58p@ $67FC 0

p8PP-57FC 58pP 67FC PPPG
pepp 5809

Note you must take care to respect the 3-byte difference on the
upper bounds for the workspace and the symbol table.

DIRE WARNINGS :

DW #1: MACROTEA reserves the top 1K of RAM for its own use. Make
sure when you are assembling source that you don't load
object code into this area, 'cause if you do, all kinds of
unpredictable but awful things could happen! This area is
$7C00-8000 for a 32K PET.

DW #2: Incorrect or unusual values of SET may bomb the system.
For example:

SE O

0000-3FFC 4000-5FFC 0000
0000 4000
10 HELLO

(poof! PET has gone to never-never land.)

DW #3: When MACROTEA performs the PUT, GET, and .CT functions for
cassette tape, the PET SAVE and LOAD ROM routines are called.
These routines store and replace data from fixed areas of
memory, and if you arbitrarily change the SET values,
MACROTEA will no longer be able to correctly read files.
(This applies only to tape.)

Copyright © 1980, Skyles Electric Works

F;AGE /79

ON USING BASIC WITH MACROTEA

Often there are machine language programs which are intended
to be used from a BASIC program, for example, a game program would
call some machine Tanguage to perform an animation sequence. The
default setting of MACROTEA leaves a 1K space for short BASIC
programs.

When SET is used, the PET's BASIC pointers will be changed
so that the "Top of BASIC's Memory" pointers are at the bottom
of the workspace. When you enter BASIC from MACROTEA, the first
thing to do is to enter NEW, which will reorganize all of the
BASIC pointers to appropriate values.

Coldstart MACROTEA, and then leave via:

BR

B*¥ PC IRQ SR AC XR YR SP

.3 9085 E455 F1 FO 80 50 FF (BASIC 4.0 display)
X

READY.

?FRE(D)

1020

If you must squeeze out every byte for the MACROTEA
workspace, be sure to leave at Teast 7 bytes in BASIC (and
preferably around 100) to let you use loops like:

FOR J=1 TO 123:POKE 850,J:SYS851:NEXT

to test machine language code. The variable J requires 7 bytes.
If you use strings, you will need 7 bytes plus the length of
the string.

To summarize: MACROTEA leaves you with a 1K PET as far as
BASIC is concerned. If you use SET, it will change the "Top of
BASIC" to the Tower edge.of the workspace.

)1980 Skyles Electric Works

(c
5/16/80

PAGE 8 0

Preamble for GET and PUT

GET: The GET command will load MACROTEA source files starting at
the Tocation specified by the beginning of source as defined
with the SET command. The power-on value is $0800.

PUT: PUT will save the contents of memory between the start and
end source pointers as defined with the SET command. The
power-on range is $0800-3FFC .

After executing a GET or PUT statement to the disk, MACROTEA will
return with the disk error channel message:

00, 0K,00,00

...but this only applies to the disk. When using cassette the only
response after the cassette "OK" is the return of the cursor after the
process is complete. (You won't see a READY.)

Specifying GET and PUT filenames using MACROTEA is identical to
the way you would specify SAVE and LOAD filenames in BASIC.

Copyright © 1980, Skyles Electric Works

PAGE 81

Disk User's Note

If you have a Commodore Disk system, check the DISK command for
how MACROTEA interfaces with the disk. Disk versions of MACROTEA will
default to the DISK for most file operations instead of to the tape
units. Disk filenames should be in quotes and have the disk drive
number included, for example, "@:TESTFILE"

Copyright © 1980, Skyles Electric Works

PAGE 8 2

PUT (D1/D2) "filename" (start Tine#) (end line #)
T e B Rare

PUT writes the contents of the workspace to a cassette tape
file. The filename may be omitted, or consist of from 1 to 16
characters.

The default Tape Unit is #1. If provided, the parameter DI
will specify Unit #1 and D2 specifies Unit #2.

PUT will write a portion of the workspace if the 1line numbers
are specified. If only one Tine number is given, PUT writes a one-line
file. If two numbers are given, the file will contain the specified
portion of the workspace. The part written corresponds with the lines
that PRINT would 1ist to the screen - to check PUT, use PRINT.

If you are using the disc version of MACROTEA, be sure to include
the D1 or D2 to define a tape file with PUT. (NOTE: You might try it
with the disc anyways - this hasn't been checked yet as your humble
manual writer only had access to disk MACROTEA for a short time.)

If you have the Commodore Discs, PUT will default to the disc
for writing a file. The usual form is PUT "drive:filename", ie,
PUT "1:TESTFILE". With the disc system, you must use the D1 or
D2 values to write to the tape.

The Commodore Disc system's rules are in effect - for example,
if you try to PUT a file that already is on the disc, you will have
an error condition.

Examples:

Suppose the workspace contains:

PR

0010 THERE ONCE WAS A PRETTY LITTLE
0020 COMPUTER. HER CRT WAS ROSY AND
0030 HER KEYBOARD WAS A LUSCIOUS PEACH
0040 HUE. WHEN SHE RAN HER PROGRAMS,
0050 SHE WOULD USUALLY RUN THEM WITH
0060 GRACE AND CORRECTNESS. AH, BUT IF
0070 SHE SAW A BUG, SHE WOULD SCREAM
0080 AND BE HORRID!

To save this on a tape, enter:
PUT "CYBERFAIRYTALE"

PRESS PLAY & RECORD ON TAPE #1
0K

WRITING CYBERFAIRYTALE
The PET acts the same way as with normal BASIC LOAD and SAVE.

Copyright © 1980, Skyles Electric Works

PAGE 8 3
If you want to use the 2nd Cassette Unit, specify the Unit number
by using the D2 option:
PUT D2 "CYBERFAIRYTALE"

PRESS PLAY & RECORD ON TAPE #2
0K

(etc)

Of course, D1 will specify Tape #1.

To write a portion of the text in the workspace, just add the
line numbers which specify the part to be written:

PUT "CYBERFAIRYTALE" 40 70

PRESS PLAY & RECORD ON TAPE #1
(etc)

To check this, clear the workspace and use GET:
CL
GET

PRESS PLAY ON TAPE #1
(etc - see the GET examples)

PR

0040 HUE. WHEN SHE RAN HAR PROGRAMS,
0050 SHE WOULD USUALLY RUN THEM WITH
0060 GRACE AND CORRECTNESS. AH, BUT IF
0070 SHE SAW A BUG, SHE WOULD SCREAM
//

If you care to spend the time, you can check that PUT follows the
same rules as PRINT does to select the lines to write to the file.

PUT needs the quotation marks around the filename and f D1 or D2
are used, they must precede the filename.

PUT FUBAR

109 AT LINE 0000
PUT "FUBAR" D2
109 AT LINE 0000

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 8 4

Also, D1 and D2 are the only legal device names.
PUT D3 "FUBAR"
10A AT LINE 0000

There is no equivalent to VERIFY with MACROTEA. The suggested approach
is to follow these rules:

1) Be sure your tape unit is correctly maintained. (clean,
demagnetized, good tape, etc.)

2) Make 2 copies of any important files.

3) Dedicate one cassette side per file - don't put two different
files on one side except for archival tapes.

Disc Examples:

To save our 1ittle tale of the rosy computer, just use the
wedge type save command:

PUT "O:CYBERFAIRYTALE"

00, 0K,00,00

CYBERFAIRYTALE
(Naturally you must have 1) a disc in drive number O and 2) this
disc is initialized and formatted. See the DISK command for how the
example diskette was formatted.)

We may check the directory with the DI command:
DI " $0!|

0 "SCRATCHDISC--=--- " SD Underline shows reverse field.
2 "CYBERFAIRYTALE" PRG
668 BLOCKS FREE

If we try to save it again with the same name, the disc runs for
a while and then the error LED flashes. The disk error channel returns:

63, FILE EXISTS,00,00

The solution is to save the workspace under a different name, such
as "MOREFAIRYTALE". You are advised to: 1) PUT the new version, 2) then
scratch via DI (if you wish), 3) use DI alone to get a disk error message:

PUT "O:MOREFAIRYTALE" (response to PUT not shown)
DI "SC:CYBERFAIRYTALE"
DI

01, FILES SCRATCHED,00,00

Don't kill your ol1d file first - or you'll regret it! While we are on
the subject, you are advised to make backup copies of any important
text files via the disk Duplicate or Copy commands. Remember that some
of the Commodore Disk System's commands, 1ike Save, have some nasty
bugs in them and a backup may save you a lot of time later.
Backups should always be on a different diskette and the diskette put
into a safe place. Putting the date or at least a version number in
your filenames is also helpful.

© 1980, Skyles Electric Works

PAGE 8 5

EEI_(D1/D2) "filename"

GET reads a file from the cassette tapes and puts it into the
workspace. If a filename is provided, the tape will be searched
until a "matching" filename is found. A "match" is defined by the
PET operating system as described earlier. If no filename is given,
GET will accept any file,

If the D1 or D2 parameter is provided, GET will read from the
specified Tape Unit. D1 specifies Unit #1, and D2 Unit # 2.

Caution: GET simply attempts to load the file into the PET's memory.
If the SET values were different when the tape file was originally PUT,
or the wrong kind of file is read (1ike machine language,

or BASIC programs), GET doesn't care.

If text is present in the workspace, it will be lost. GET clears
the workspace and then loads the file.

Be sure that the tape being read was created by the MACROTEA PUT
command, and that the memory pointers of SET are the same.

For Commodore Disc users, GET will default to the Commodore Disc
System. You should use the form "drive:filename", such as
GET "O:TESTFILE" to fetch a file from your discs. Since MACROTEA merely
passes the commands on to the disc system, the usual disc rules are in
effect.

Disc users must specify DI or D2 to read a file from the cassette
tape units.

Examples:

We assume that you have the tape created in the example for PUT.
If not, go make one.

Using GET is simple enough:

CL
PR

/1

GET
PRESS PLAY ON TAPE #1

0K
¥ (no message or prompt except cursor)

Copyright © 1980, Skyles Electric Works

PAGE 8 6

PR

0010 THERE ONCE WAS A PRETTY LITTLE
0020 COMPUTER. HER CRT WAS ROSY AND
0030 HER KEYBOARD WAS A LUSCIOUS PEACH
0040 HUE. WHEN SHE RAN HER PROGRAMS,
0050 SHE WOULD USUALLY RUN THEM WITH
0060 GRACE AND CORRECTNESS. AH, BUT IF
0070 SHE SAW A BUG, SHE WOULD SCREAM
0080 AND BE HORRID!

/]

Since no filename was given, GET accepted the first file on the

tape. Once Toaded, a report on the file is given. The first number

is the Tength of the file in hexadecimal. The other two numbers show
the location of the first byte, and the location of the last byte plus
one for the text in the workspace.

If text were already in the workspace when GET was used, this
text will be destroyed, and the text from the tape file will appear
instead. This is easily checked.

According to the PET Operating System rules, subsets of the
filename are acceptable. GET "CYBER" or GET "C" will also find and
read the file CYBERFAIRYTALE.

The default tape unit is #1. If you want to specify the tape
unit, use D1 or D2 before the filename:

GET D2 "CYBER"
PRESS PLAY ON TAPE #2

0K
[(cursor is only response at completion)

Like PUT, the filename must be in quotation marks and the parameters
in the right order.

Disc Examples:

Let's remove our 1ittle saga of the pretty computer and see if
we can get her back:

CLEAR

GET “g:CY"
62, FILE NOT FOUND,00,00

Well...... the disc system needs the full filename. Try it again:
GE "0:CYBERFAIRYTALE"

00, 0K,00,00
CYBERFAIRYTALE

Copyright © 1980, Skyles Electric Works

PAGE 8 7

MACROTEA prints only the disk error message.
size of the remaining workspace:

Sk

0800-0901 4000-5FFC 0000
0901 4000

If you wish to find the

Use of PR could verify that the file was correctly loaded into
the workspace.

You may, if you wish, specify D8 for the disk - though there's
no good reason to:

GET D8 "O:CYBERFAIRYTALE"
00, OK,00,00
CYBERFAIRYTALE

(And the same with PUT.)

Copyright © 1980, Skyles Electric Works

PAGE 8 8

~ DUPLICATE

DUPLICATE lets you copy from Tape Unit # 1 to Tape Unit # 2.
A tape with several files can be copied automatically. (When you
are assembling a large program, this facility is helpful in setting
up your multi-file tape.)

DUPLICATE operates by reading the first file into the workspace,
copying onto Tape #2, reading the second file into the workspace,
copying, and so on.

DUPLICATE must be stopped by pressing STOP. To return to MACROTEA,
SYS 41104. DUPLICATE will destroy the contents of the workspace and
leave it with the Tast file that was copied.

If you wish to have DUPLICATE stop at the end of a tape, an
end-of-tape marker must be written as the last file on the original
tape. This is done with the command PUT X. The duplicate tape will
not have the end-of-file mark on it.

The disc version of MACROTEA doesn't have the DUPLICATE
command. If you enter DU, you end up in the Monitor. Since you
can copy files and discs via the DISC command, this isn't much of
a loss.

Examples:

Note: To use DUPLICATE, you will need the Commodore Second Cassette
Unit for the PET.

CL
GET

PRESS PLAY ON TAPE #1
0K

FOUND CYBERFAIRYTALE
LOADING

This loads our little fairy tale into the workspace. Leaving the tape
in the drive, and not rewinding, perform these PUTs:

PUT "FILE ONE" (No need to "PRESS PLAY & RECORD after
PUT "FILE TWO" the first one....)

PUT “FILE THREE"

Now, rewind the tape, and CLEAR the workspace:

CL

DUPLICATE

PRESS PLAY ON TAPE #]1
0K

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 8 9

FOUND CYBERFAIRYTALE
LOADING

PRESS PLAY & RECORD ON TAPE #2

Put a blank tape in the second unit and do as directed.

0K

WRITING CYBERFAIRYTALE (Now that both recorders are
FOUND FILE ONE correctly set, no more prompts
LOADING will appear.)

WRITING FILE ONE
FOUND FILE TWO
LOADING

WRITING FILE TWO
FOUND FILE THREE
LOADING

WRITING FILE THREE

We are done, but DUPLICATE doesn't know that. Press the STOP key when
you hear Tape Unit # 1 start turning again. The PET is now in BASIC
que, and to return to MACROTEA, SYS 41104.

A note of caution: DUPLICATE is like GET in that it doesn't care
where the tape being read thinks the workspace is. Be sure SET is the
same, and that the tape was formed via PUTs.

To stop this nasty behaviour, the original tape must have an
end-of-file marker on it. Repeat the process used above to generate
the original tape, and then execute:

PUT X

M (the cursor appears. It is assumed that PLAY and RECORD
were already pressed.)

When you try DUPLICATE again, it will read and copy the files
as before. When the last file is read, the end-of-tape marker will
force a return to the MACROTEA Editor and the FILE: heading will
be printed. '

Two cautions: First, no end-of-tape marker will be written onto
the duplicated tape. If you want this, use:

PUT D2 X

Second, the end-of-tape marker used by MACROTEA is not the same
as the one used by the PET's BASIC. Attempts to create a data file
with your favorite word processor on tape and then to GET this tape in
MACROTEA are totally doomed to fail. '

© 1980, Skyles Electric Works

pace 90

DISK (Commodore Disk Command)

DISK implements the "Wedge" (or, as Commodore calls it, the
DOS Support) for MACROTEA. Any disc command of the form:

PRINT#1,"some command or another"
may be executed in MACROTEA via:
DI "some command or another"

In the same manner as Wedge, DI without a string in quote marks
will interrogate the disc drive for an error message and print the
four error strings.

The / and * forms of the wedge are not implemented, as MACROTEA
does not handle BASIC programs.

Naturally, all the quirks and foibles of the disc system are still
there - MACROTEA merely uses DI to pass your commands on to the discs.
If you must use the non-PRINT# commands (OPEN CLOSE SAVE VERIFY LOAD),
these must be done from BASIC's direct mode as usual.

Small warning: If you leave MACROTEA and enter the PET's
BASIC mode, it is very easy to close the disc file inadvertently.
(Just as in normal BASIC, editing a 1ine, RUN, NEW, and CLR will remove
all variables, including the disc's OPEN specification.) If you then
return to MACROTEA via the warm start (SYS 41104), the use of DISK

will create a crash!!!! Your options are either to 1) use the MACROTEA
cold start (SYS 40960) or 2) OPEN 1,8,15 and then use the MACROTEA
warm start.

Though DISK does the Wedge for MACROTEA, if you exit to BASIC
mode, the Wedge isn't there.

Examples:
If you don't have the Commodore Discs, these examples won't work.
Let's do a few basic disk utility jobs to get the feel of MACROTEA
and the Commodore Disk system. First, get MACROTEA running, and find
a blank diskette. Now let's format the diskette:
DI “NEW:SCRATCHDISC,SD"
M
While the cursor blinks, the disc drives take about 30 seconds to format
the disc. Note we have used the default drive number 0 (zero). To see
if there are any errors,

DI
00, 0K,00,00

Nope. Now for a peek at the directory:

Copyright © 1980, Skyles Electric Works

&

PG 9102

DI n $0=|

0 "SCRATCHDISC==--- " sSD Underline indicates reverse field.
670 BLOCKS FREE.

In normal use, you have to initialize the disk drive each time
you place a new disk into the drives. (New in the sense of different).
Turn off the disks, turn them back on again, and re-insert the disk
we just created. Then:

DI "I1Q" Letter I, number zero
Now the PET disks know that the new disk is present.

To check the error reports, try:

DI IIIllI

The disk will eventually turn on the error LED, and to see what's
wrong, just use DI:

DI
21,READ ERROR,79,02

Be sure there isn't a disk in the Drive #1 for this example.)

See the sections on GET and PUT to see how MACROTEA text files
are stored on the disk. Once you have a few smal]l files, see if you
can create a backup disk by using the disk DUPLICATE via DI.

As with the Wedge, all DI commands must be surrounded with
quotation marks and have one space between DI and the quotation
marks.

REPRISE:

The following disk commands are available via the DISK command:

PUT GET NEW INITIALIZE
DIRECTORY corPY DUPLICATE SCRATCH
VALIDATE RENAME ERROR REPORT

(c)1980 Skyles Electric Works
5/16/80

PAGE 9 2

THE ASSEMBLY PROCESS

Since MACROTEA is intended for assembly of 6502 code, there have
to be commands related to the assembly of the text in the workspace
(or from tape files). Many of the facilities described here may be
confusing to the beginner - but as time passes, one appreciates their

worth.

Copyright © 1980, Skyles Electric Works

PAGE 9 3

ASSEMBLE (LIST/NOLIST) (Starting Line Numbezl

The ASSEMBLE command directs MACROTEA to begin assembly-of the
source code in the workspace. (For the details concerning the modes
of assembly, see the section on the Assembler.)

When ASSEMBLE is used without any parameters, it defaults to
the LIST option and will start assembly at Line 0000 in the workspace.

If you specify ASSEMBLE LIST, the second pass of the assembly will
provide an assembly listing to the screen. ASSEMBLE NOLIST will not
provide an assembly Tisting. (NOTE: LIST or NOLIST will be overridden
by the .LS or .LC pseudo-ops if they appear in the source text.)

When a Starting Line Number is given, the assembly will start at
this line instead of from the first line in the workspace.

Examples:

The following program is used as an example for all of the
commands in this section. When executed, the program simply prints
the PET character set on the top of the screen.

FO SE

PR

0010 ;DRAW CHAR SET ON SCREEN
0020 .BA $033A
0030 .0S
0040DRAW CLD

0050 LDX #$00
0060LOOP TXA

0070 STA $8000,X
0080 INX

0090 BNE LOOP
0100 RTS

0110 .EN

To assemble this program, simply enter:

ASSEMBLE
//0000,0345,0345

The report at the end of assembly explains that:
There are 0000 errors. (This is a decimal number)

The ‘program counter is at $0345 at the end. (Hex number)
The loading counter is at $0345 at the end. (Hex number)

Copyright © 1980, Skyles Electric Works

PAGE 9 4

For a clearer understanding of these, see the pseudo-ops .CE, .BA, and
MC. Briefly, .CE tells the assembler to continue assembly even if errors
are detected. The first number in the report tells how many errors were
detected. .BA sets the assembler's program counter. When .the assembly

is finished, the program counter will be one more than the address of
the last assembled byte. The second number indicates this in hexadecimal.
.MC tells the assembler to store the code in a location different than
.BA is assembling to. The loading counter indicates where the byte
following the last byte of code will go.

If you now execute this program by RUN DRAW, the top of the screen
will immediately fill with the 256 characters of the PET's screen. This
program is a much faster equivalent of the BASIC program:

FORJ=0 TO 255: POKE 32768+J,J :NEXT J

To see the assembly Tlisting, use:

AS LI
0010 ;DRAW CHAR SET ON SCREEN
0020 .BA $033A
0030 .0S
033A-D8 0040DRAW CLD
033B-A200 0050 LDX #$00
033D-8A 0060LOOP TXA
033E-9D0080 0070 STA $8000,X
0341-E8 0080 INX
0342-DOFS 0090 BNE LOOP
0344-60 0100 RTS
0110 .EN
LABEL FILE: [/ = EXTERNAL]
DRAW=033A LOOP=033D

//0000,0345,0345

The 12 columns on the left contain the object 1isting. First is the
program counter's value, then a dash, and then from 1 to 3 bytes
of object code, depending on the instruction's length.

In the center are the line numbers from the workspace, and to
the right is displayed the source text. The format of the source text
part will be controlled by the state of FORMAT (SET or CLEAR). Here
the format is SET.

Following the listing, the Symbol Table (Called the LABEL FILE
just ‘to be confusing!) with a display of the labels and their values.
This program has two labels, DRAW at 033A, and LOOP at 033D.

Finally, the end-of-assembly report is given.

The { / = EXTERNAL] note in the Symbol Table's title is a remnant
from MACROTEA's ancestor, the relocating assembler by Carl Moser. It has
no meaning in MACROTEA.

Copyright © 1980, Skyles Electric Works

PAGE 95

You may start the assembly at a specified Tine number if you
desire:

ASSEMBLE LI 40

9800-D8 0040DRAW CLD
9801-A200 0050 LDX #$00
s o kete) ssas

Note that the pseudo-ops in Lines 20 and 30 were ignored. The code
is also assembled to the default address of $9800. If you tried AS 30,
the code would end up at 9800, and a SYS 826 might result in a crash
(If the previous assembly wasn't performed).

When errors are encountered, ASSEMBLE will usually stop the
assembly and report the error message - and leave you in the Editor.

5 HELLO

AS
0005 HELLO
102 AT LINE 0005

The .CE pseudo-op will continue assembly in the face of minor errors:

1 .CE
AS

0005 HELLO
'02 AT LINE 0005

0005 HELLO

!08 AT LINE 0005

102 AT LINE 0005
//0002,0345,0345

Note that the report now indicates two errors.

Copyright © 1980, Skyles Electric Works

PAGE 96

RUN (Label/Label Expression)

RUN executes the machine Tanguage code in memory starting at
the address specified by the Label or Label Expression. To return
from the machine code, an RTS instruction is used. '

Exampies:

Again, let's use the example program in ASSEMBLE. First, assemble
the program:

AS LI

..... (shown earlier)

LABEL FILE: [/ = EXTERNAL]
DRAW=033A LOOP=033D
//0000,0345,0345

Note that the starting point, DRAW, is at address $033A. We can use
RUN to see what happens....

RUN DRAW

The top of the PET's screen will now be a jumble of the 256 characters
used by the PET. If the screen didn't scroll, the top will start with:

@ABCDEFGHIJKL (etc)
RUN will accept any Label Expression - for example, since DRAW is
at $033A,

RUN $033A

will also work just fine.
Another variation is:
RUN LOOP-3
or:
RUN 826 (Decimal equivalent of $033A)
RUN does require a legal value - or you will get an error message:
RUN
'0A AT LINE 033D

Here, RUN needed a value to execute from.

Copyright © 1980, Skyles Electric Works

PAGE 97

RUN POOHBEAR

108 AT LINE 033D
Here, POOHBEAR is a non-existent label.
Some caution is needed with-RﬂN:

1) Be sure the machine code is really there! The default setting for
the assembler does not load the object code.

2) Label Expressions stop at the first space. RUN LOOP -3 would execute
at $033D, the value of LOOP - not at 033A as desired.

3) Be sure your machine code will eventually find an RTS and stop.
The PET will not come back from a program if the program doesn't
tell it to.

Copyright © 1980, Skyles Electric Works

PacE 9 8

BREAK

BREAK transfers you to the Monitor part of MACROTEA. See the
section on the Monitor for the commands used by the Monitor. To
return to MACROTEA, use: ‘

G 9086

which will jump to the "Warm Start" address of MACROTEA.

Examples:

Suppose we have the example program mentioned in ASSEMBLE.
To check if the code was really present in memory,

ASSEMBLE
//0000,0345,0345
BREAK

B* PC IRG SR AC XR YR SP

.5 9086 E455 F1 FO 80 50 FF (BASIC 4.0 display)
. M M indicates the cursor.)

The BREAK command jumped to the MACROTEA Monitor. Now for a look
at the code:

M 0338,0345
0338 20 20 D8 A2 00 8A 9D 00

0340 80 E8 DO FS 60 36 FF 65
¥

The underlined portion is the object code for the program.
To get back to MACROTEA, restart at 9086 (hex).

.G 9086

0800-57FC 5800-67FC :): 0000
087D 580C

M

The address $9p86 is the "Warm Start" address for MACROTEA. A jump
to the "Warm Start" turns MACROTEA on without any changes to the
workspace or the various commands settings.

If for some reason you suspect that the workspace is mangled,
the "Cold Start" for MACROTEA is $9000. (Same as a SYS 36864.)

Copyright 1982 Skyles Electric Works 8/14/82
Copyright © 1980, Skyles Electric Works

Pace 99

PASS

PASS initiates Pass 2 of the assembly process for multifile
assemblies. (Ie, those requiring the .CT pseudo-op.) If your
source text is entirely in the workspace, MACROTEA will automatically
start PASS 2 when it sees the .EN pseudo-op - and PASS is not
required.

If your files are assembled from tape, PASS gives you a "breathing
spell" in which to rewind the tapes. MACROTEA will read the tapes
during Pass 1, and then announce READY FOR PASS 2 and wait. When you
have mounted your rewound tapes, enter PASS and the second part of the
assembly will proceed.

PASS is limited to tape unit #1.

If you have the disc version of MACROTEA, there is usually no need
for PASS. As described with the .EN pseudo-op, .EN "drive:filename"
will start Pass 2 with the specified file. (This is usually the first

file in the assembly - unless the first file consists entirely of .DI
and .DE label definitions.)

Examples:

See the examples for .CT.

Copyright © 1980, Skyles Electric Works

pace 100

Copyright © 1980, Skyles Electric Works

PAGE 101
SYMBOLS

SYMBOLS will display the contents of the Symbol Table, provided
an assembly has been performed.

Examples:

Suppose we have saved the example program on a tape - and
then do the following:

(Cold Start MACROTEA via SYS 36864)
GET "EXAMPLE PROGRAM"
PR
(Example Program is listed.)
Now to try SYMBOLS
SYMBOLS
LABEL FILE: [/ = EXTERNAL]
//00FF ,9800,9800

Since no assembly was performed, the Symbol Table is empty. SYMBOLS
displays the empty table, and then a meaningless Assembly report.

If an assembly is performed,
ASSEMBLE

//0000,0345,0345

5Y

LABEL FILE: [/ = EXTERNAL]
DRAW=033A LOOP=033D
//0000,0345,0345

Now the expected contents of the Symbol Table are present. Note the
repetition of the assembly report.

If the assembly had an error, the Symbol Table will be empty.

Try adding Line 5 HELLO, assembling, and LABELS - the "null"
Symbol Table will be shown.

Copyright © 1980, Skyles Electric Works

pact 102

NOTE :
As MACROTEA starts, the symbol table is printed in two columns
to fit nicely on the PET's screen. The symbol table appears after each

ASSEMBLE or SYMBOLS command. If you are using HARD, the number of
columns can be changed by:

POKE 32257, 18 (two columns)
POKE 32257, 36 (three columns)

If you prefer to use the Monitor, the hexadecimal values are:

Address: $ 7E01
Two Columns: $ 12
Three Cols: $ 24

Copyright © 1980, Skyles Electric Works

PAGE 103

Assembler in Detail

THE ASSEMBLER
STANDARDS USED HERE

MACROTEA is intended for professionals and experienced amateurs.
If you have not used an assembler before, it will be some time before
the material in this section will make sense. Learning machine language
is not trivial - it takes as much time and effort as learning BASIC.
Also, like BASIC, once you grasp how machine language works, learning
a new machine language is much simpler than learning your first one.

There are several books available which purport to teach 6502
assembly coding. As each book emphasizes different things, you are
advised to get two or three to begin with. Try entering some of the
book examples and see if you can get them to work. (Don't be surprised
if some of the examples don't work. Each author has his very own,
slightly different assembler for the 6502, and some (I won't say who!)
examples are just plain wrong!)

Please take a Took at the Summaries section on the Assembler
before reading this part. Several important details, including the
assembly text format, opcodes, addressing modes and default settings
are covered in the Summaries and will not be repeated here. This
section will refer you to the Summaries as needed.

The standard MOS Technology 6502 Op-Codes are used in MACROTEA.
See the "6502 Instruction Set" and related parts in the Summaries
section of this Manual.

ADDRESSING MODES

The 6502 addressing modes are many and diverse. In MACROTEA, the
form of the operand determines the addressing mode to be used. See the
"On Addressing Modes" page in the Summaries for the Assembler.

ASSEMBLER DEFAULTS

As you will have noticed in the Editor, some of the commands merely
decide which of several options are to be used. For example, FORMAT is
CLEAR unless you tell MACROTEA otherwise. The Assembler has its own host
of options, and their initial settings, or "Defaults" are described
in the "Assembler Default Settings" part of the Summaries for the
Assembler. Take due heed - or nasty surprises are lurking for you!

Copyright © 1980, Skyles Electric Works

pace 104
LABELS

In assemblers, labels play several roles. First, a label indicates
an address - and the uses of addresses is a major part of machine language
coding. If you are used to BASIC, the versatility of labels & addresses
will be a bit confusing.

Some applications of addresses are:

JMP FOOQ Here, FOO indicates where the 6502 is supposed to

JSR FOO get the next instruction for execution.

BEQ FOO If the branch condition is true, the 6502 will jump
to FOO.

LDA FOO Here, FOO refers to the location of a specific

STA FOO byte needed for the instruction's operation.

ROR FOO

LDA FQO,X The meaning of FOO grows more abstract. In the first

STA (F00),Y instruction, FOO indicates the starting point of
a table. In the second instruction, the value of the
two bytes at FOO and FOO+1 are used to tell where
the table begins.

LDA #L,FOO0 This short sequence takes the value FOO and stores

STA BAZ it as an address in the locations BAZ and BAZ+1. This
LDA #H,F00 kind of manipulation is used quite often, especially
STA BAZ+1 when first "setting up" values for a program to use.

One way to view labels is to treat them 1ike BASIC variables with
a few limitations: 1) A label may be given a value only once. (Unless
the SET directive is applied.) 2) A label must have an integer value
between 0 and 65535. 3) If you refer to a label, it must be defined
somewhere, or you will get an error.

A MACROTEA label may have from 1 to 10 characters - the first character
should be from A-Z, and the others taken from A-Z and 0-9 (just like BASIC
names). If you follow this convention, all will go smoothly. MACROTEA
will accept a few other characters in label names, 1ike @ [] 2 / .
and so forth, but this isn't a good idea. (Your programs will get
harder to read and 10 Tetter labels permits a lot of variety. If you
are used to short 5 or 6 letter label names, please take note.)

MACROTEA labels must begin in the first column of the text line
immediately after the line number. If you don't do this, MACROTEA tries
to see the label as an opcode or pseudo-op and will get confused. This
requirement does not make for pretty assembly 1istings, but you can
get used to it. A quite legible 1isting can be made if you use MANUSCRIPT
SET and FORMAT SET and then PRINT.

For examples illustrating labels, see the Examples section
following "Expressions" (which comes up next.)

Copyright © 1980, Skyles Electric Works

PAGE 105

EXPRESSIONS

In many cases, some simple computations must be performed before
you know the value for an operand. For example, suppose a table of
bytes starts at BARSOOM, and you want to use the third entry in the
table. It is simpler and clearer to use BARSOOM+2 to indicate this
value instead of a set of labels BARSOOM, BARSOOM1, BARSOOMZ, etc.

Though the use of expression in MACROTEA is a great convenience,
bear in mind that these are used to assist in assembly, and once your
program is assembled, their values may not change.

MACROTEA supports these features in expressions:

1) (label) The value of the label is used.

2) + - Addition and subtraction.

3) nn, $nn, %nn Decimal, Hexadecimal and Binary numbers.
4) = Value of the program counter.

Labels: Any legal MACROTEA label may be used in an expression. Since
MACROTEA is a two-pass assembler, the definition of a label's value can
appear after the label's use in an expression.

It is possible with the .DI pseudo-op to define labels with
ambiguious or meaningless values - however, MACROTEA will cheerfully
assign values to these (but not the ones you intended) and not tell
you of your errors. The moral is: Labels which are created via .DI
or .DE shouldn't be used before they are defined.

Arithmetic: The only arithmetic operations are +, addition, and
-, subtraction. (I would Tike to see * / AND OR NOT XOR at least.) The
values are computed by scanning from left to right - just Ti*g a simple
four-banger calculator. A1l arithmetic is computed modulus 2'° (zero
to 65535) as integers. This means that there are no negative numbers
in MACROTEA, so the expression 1-2 yields FFFF. (Bewares!)

Take care not to put spaces in an expression - if MACROTEA sees
a space, it assumes the expression is finished, and the remaining
characters in the line will be seen as a comment.

Numbers: MACROTEA assumes a number is in decimal unless
you provide the prefix § or %. The $ prefix indicates the number is
En hexadﬁcima1 (0-9 or A-F) and the % prefix indicates a binary number
Oorl).

If the number provided is too large (more than 65535 or FFFF),
MACROTEA will take the rightmost digitﬁsto compute the number. If the
number is decimal, a further modulus 2~ will be performed to numbers
from 65536 to 99999.

Copyright © 1980, Skyles Electric Works

PAcE 106

Program Counter: As MACROTEA assembles the source text,
it keeps a counter which is used to define addresses and in most
cases to store the assembled bytes of code into memory. This is
called the program counter, and:

THE VALUE OF THE PROGRAM COUNTER IS ALWAYS THE ADDRESS OF
THE OP-CODE BEING PRESENTLY ASSEMBLED FOR INSTRUCTION
OPERANDS, AND THE ADDRESS OF THE NEXT BYTE TO BE ASSEMBLED
FOR PSEUDO-OP OPERANDS.

A bit of thought will tell you that this is the only reasonable way

to do this.
If we have:
9800-AD0002 0010 LDA =
9803-03 0020 .BY =

In 1ine 10, the program counter is the address of the op-code, AD,

for the LDA. The operand of the LDA evaluates to $200. When you are
setting up short branches, Tike BEQ F00+3, you must count from the

first byte of the BEQ.

In Tine 20, the program counter is the next address to be assembled,
which is in this case 203.

Note: MACROTEA does not see these features as expressions:

LDA #H, (expression) - the (expression) part will be
LDA #L, (expression) computed as usual.
LDA #'Q - ASCII values won't work in expressiqns.

but you should be awares of them. (See Addressing Modes.)

Examples for Labels & Expressions:

It isn't possible to explore all possible combinations of
Labels, Numbers, etc in the space available here. Have a look at
these examples, and you will see how it goes together.

Suppose we have this program fragment:

PR

0010 LDA 10+20+2
0020FUBAR INX
0030 INC $FFEE
0040 BNE FUBAR
0050 .EN

Copyright © 1880, Skyles Electric Works

PAGE 107

Now to assemble it:

AS LI

9800-AD2000 0010 LDA 10+20+2

9803-E8 0020FUBAR INX

9804-EEEEFF 0030 INC $FFEE

9807-DOFA 0040 BNE FUBAR
0050 .EN

LABEL FILE: [/ = EXTERNAL]

FUBAR=9803

//0000,9809,9809

If we get out our Programmer's Magnifying Glass & Nit-Picker, a few
things can be gleaned from this mess.

A Took at 1ine 10 reveals that the operand of the LDA is $0020,
which happens to be 32 or 10+20+2 in decimal.

Line 30 reveals that the hexadecimal number $FFEE was correctly
entered as the operand of the INC instruction.

Line 40 shows the branch to FUBAR is assembled as a FA, or -6
in decimal. Since the 6502 adds the branch value to the address of
the byte following the branch instruction, this value is also correct.
(Try it by hand for a while!)

The symbol table displays FUBAR as 0203, as is doubtless true.

Now Tet's try a few more features:

AS LI

0005 .BA $0200

0010TOM .DI DICK+5
0200-AD1004 0020 LDA TOM+TOM
0203-E8 0030DICK INX
0204-290F 0040 AND #%00001111
0206-A948 0050 LDA #'H
0208-8D1802 0060 STA HARRY
020B-AS08 0070 LDA #L,TOM
0200-8D1902 0080 STA HARRY+1
0210-A902 0090 LDA #H,TOM
0212-8D1A02 0100 STA HARRY+2
0215-6C1902 0110 JMP (HARRY+1)
0218- O120HARRY .DS 3

0130 .EN
LABEL FILE: [/ = EXTERNAL]

TOM=0208 DICK=0203
HARRY=0218

//0000,0218,021B

Copyright © 1980, Skyles Electric Works

PacE 1 0 8

If you read this program, the program will run, and not do very
much (besides crash your PET). However, there are several expressions
worth note.

Line 10 uses the .DI pseudo-op to set the value of TOM. 0410 turns
out to be twice 208 in hexadecimal, so the expression TOM+TOM works out
correctly in line 20.

Line 40 shows the use of a binary number as an AND mask. This is
more readable than $0F or 15 would be.

Line 50 illustrates the use of ASCII data - "H" is 48 in hexadecimal.
Lines 70 and 90 show the use of the #H and #L addressing modes
to simplify loading the address TOM into the locations HARRY+1 and
HARRY+2.

Note that the .DS pseudo-op generates a "hole" in the
assembly 1isting.

Exercise:
Using the short program:

10LABEL .DI 100
20 .EN

By changing the "100" to the right of the .DI, check out how the
MACROTEA expressions are calculated. For example, what is the

r?su1t of .DI $FFFF+123? Take some care to investigate the

2'% numerical 1imits and decimal numbers in the range 65536 to 99999.

Copyright © 1980, Skyles Electric Works

PacE 109

PSEUDO-OPS AND DIRECTIVES

An assembler which only handled labels and the 6502 op-codes
wouldn't be very useful. For example, how would you tell it to start
the assembly at an address other than zero?

MACROTEA handles this by providing pseudo-ops and directives.
A pseudo-op is a "fake" op-code used to control various "housekeeping"
tasks - such as to list or not 1list the assembly, deciding where the
assembly should start, and so on. In MACROTEA, pseudo-ops always
begin with a peroid and are placed in the Op-Code field. A directive
is used to decide whether to assemble blocks of source text or not.
In MACROTEA, directives are mostly confined to the conditional assembly
instructions. Directives are not preceded by a period.

Copyright © 1980, Skyles Electric Works

pace 110

PRINTER CONTROL

'-L.S. List Source
;iii Don't List Source
.EJ Send Form-Feed to Printer if HARD SET.

The MACROTEA assembler normally takes two passes. In Pass 1, the
source text is scanned for label values, and when complete, the symbol
table is filled with the labels and their values. In Pass 2, the source
text is scanned again, and the 6502 machine language code is generated.

If the .LS is in effect, PASS 2 prints the assembled text and the
source text on the screen, which provides you with the assembly listing.
When the .LC is in effect, the listing is not generated.

By combining .LS and .LC, you can select the parts of the assembly
that you want listed. This is quite handy with long programs.

The .EJ pseudo-op sends a form-feed - which is ignored by the PET's
screen, but ejects a page on the printer if HARD is SET. .EJ may be
used to make your listing (in hard copy) simpler to read; for example
you can put subroutines on separate pages.

As you might expect, .LS and .LC will interact with the ASSEMBLE
LIST and NOLIST options. The simplest way to view this is that a flag
exists which tells the assembler whether to 1ist at Pass 2 or not.
During Pass 1, the .LS and .LC set and reset this flag - with the last
one seen determining the final value of the flag. On Pass 2, the .LS
and .LC again affect the flag, and the listing is provided or not.

This results in:

If you have no .LS or .LC, AS LI and AS NO will perform as
expected.

If you have .LS or .LC, the last one will determine whether
the start of the assembly will be Tisted. This overrides the options
for ASSEMBLE.

Examples:
Let's start with this simple non-program:
PR
0010 ;ONCE UPON
0020 ;A TIME
0030 ;THERE WAS A
0040 ;BASHFUL
0050 ;PROGRAM
0060 .EN

Copyright © 1980, Skyles Electric Works

PAGE 111

You can check that AS LI and AS or AS NO work as expected. Now let's
try out the .LS pseudo-op:

35 LS

AS
0010 ;ONCE UPON
0020 ;A TIME
0030 ;THERE WAS A
0035 LS
0040 sBASHFUL
0050 ;PROGRAM.
0060 .EN

(We will skip the symbol table & other junk.)

AS NO

(Same thing.)

You would expect the listing to begin at Line 35 or 40, and
not to see the whole thing! During Pass 1, MACROTEA saw the .LS
and set the flag to "1ist". This overrode the "nolist" set by the

ASSEMBLE command. During Pass 2, the flag was checked and found to
be in the "list" state, and so the whole program was listed.

Now to try the .LC pseudo-op:

55 .LC

AS
0035 LS
0040 sBASHFUL
0050 ;PROGRAM

Here, Pass 1 saw the .LC last, and didn't start listing until
the .LS in Line 35. Note that the .LC and .LS start with their own
lines, and not the immeidately following line.

You can verify that AS LI will give the same result.

I won't provide an example of .EJ for it would take a Tot of
room & blank space. You can try:

45 .EJ
and see the result. Note that the form-feed appears on the PET screen.

MACROTEA is conservative and sends linefeeds (actually Cr/Lf) to the
printer, so the screen is affected too.

Copyright © 1980, Skyles Electric Works

PAGE 112

ASSEMBLY CONTROL

.EN End of source text.

]

,CE Continue in the face of errors.
T

.CT "filename" Continue source from tape.

"q;jxg:fi1gngme” Continue from disc.

The .EN pseudo-op tells MACROTEA to stop examining the source
text in Pass 1 and to begin Pass 2 of the assembly. MACROTEA is a
bit Titeral-minded and requires the .EN at the end of the text that
is to be assembled. In the same spirit, you may not include .EN
within a conditional section of code. (See the Conditional Assembly

Directives.)

When an error is seen by MACROTEA, the assembly usually is stopped
and the error number is printed. When you are first attempting to assemble
a program, there will normally be a number of errors. The .CE pseudo-op
tells MACROTEA to continue the assembly if at all possible and to report
the errors as they are found.

Some errors are too serious to permit MACROTEA to continue the
assembly. These are:

104 .BA or .MC Operand isn't defined.
107 .EN missing at end.
117 Bad Tape Load. (Checksum in Error)

One of the nicest features of MACROTEA is the .CT pseudo-op.
.CT tells MACROTEA to continue the assembly by loading a new source
file into the workspace from tape or disc. This can be repeated as
many times as required. The use of .CT permits assembly of programs
whose source is much larger than the workspace. (In most assemblers,
and MACROTEA is no exception, the source text is much longer than the
final machine language program. The typical ratio is around 16-20
characters of source per byte of final machine language.)

If desired, a filename can be specified after the .CT. The PET
searches for the file according to the usual rules. Each instance of
.CT clears the workspace, loads the file, and performs Pass 1 or Pass 2
of the assembly. When .EN is finally encountered, MACROTEA will announce
that it is ready for PASS 2 and will wait for you to rewind your tape(s).
The PASS command will then execute PASS 2.

When MACROTEA links files, it ignores the first line of every linked
file. To avoid this problem, all of your programs should contain a ";"
in the first Tine:

0005 :
0010 LDA #S$AA
0020 (etc.)

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 113

Some caution must be exercised with .CT to ensure that the workspace
has the correct contents when Pass 2 is started. A simple method is to
carefully follow these steps:

1. CLEAR the workspace.

. Enter the one line program: 10 LT *°

. ASSEMBLE

B2 W ™M

When MACROTEA states that it is ready for Pass 2,
5. CLEAR the workspace.

6. Enter the one liner again: 10 .CT "

7. Now execute the PASS command.

Failure to do this will cause MACROTEA to assemble the last
file in the series, as this file and its associated .EN will be in the
workspace at Step 4.

The use of .CT also demands that:

A. - The sequence of files to be assembled should be placed on
one physical tape. MACROTEA won't stop between files to let you physically
mount different tapee cassettes.

B. - MACROTEA tends to remember the last filename that it loaded,
and if you use .CT without the "" filename, MACROTEA will search for
the remembered name instead of the null filename.

gNOTE: In some cases you can get around these rules - my concern here
is to ensure that your multifile assemblies work properly and is not to
look at all of the exceptions.)

C. - If you are using macros, each new file must have all of
its macros defined in the file. MACROTEA Tooks at the workspace to
find the expansion for a macro, and each new file will obliterate any
macro defintions in the previous file. This permits you to redefine
macros under the same name from file to file, but this isn't advised
to make debugging easier.

For the PET Disc owners, MACROTEA uses .CT in a slightly
different manner. Each file in a series to be assembled together
must end with .CT "drive:nextfilename". Each file's .CT must
specify the name of the next file to be assembled. Note that this
requires that all of the files to be assembled together must
reside on one or two diskettes.

The last file in a series to be assembled via .CT on the
disk must end with the .EN "drive:firstfilename". The filename
after .EN must be the first file in the series to be assembled.
If this is not provided, MACROTEA tries Pass 2 with the file in
the workspace (the last file of the series) which won't work too
well!

© 1980, Skyles Electric Works

pacE 114

Examples:

You will quickly come to appreciate the requirement for .EN for
MACROTEA won't assemble your programs without it. (Not that you will
ever like this!)

Suppose we have:

PR

0010 LDA #00
0020 STA O
0030 RTS

Now to try and assemble this thing:

AS NOLIST
0030 RTS
107 AT LINE 0030

Oops We need the .EN:

40 .EN

AS NO
//0000,9806,9806

Now it works.

To see that .EN is really serious business, let's add a few lines
after the .EN:

50 CMP #11
60 BNE 123

And try it again - this time with a listing:

AS LI

9800-A900 0010 LDA #00
9802-8D0000 0020 STA O
9805-60 0030 RTS

0040 .EN
LABEL FILE: [/ = EXTERNAL]

//0000,9806,9806

As you can see, the .EN was really the end, and LInes 50 and 60 were
never seen by MACROTEA.

The .CE pseudo-op is illustrated with this inaccurate program:

PR

0010 LDA #5%5
0020 STA MONKEYS
0030 ROR X

0040 .EN

Copyright © 1980, Skyles Electric Works

PAGE 115

The usual assembly gives:

AS
0010 LDA #5%*5
10A AT LINE 0010

The errors in lines 20 and 30 aren't seen for MACROTEA never gets there.
Here is the fix:

5 .CE
AS

0010 LDA #5*5
!0A AT LINE 0010

0010 LDA #5*5
10A AT LINE 0010

0020 STA MONKEYS
108 AT LINE 0020

0030 ROR X
108 AT LINE 0030
//0003,9808,9808

If you don't know what the errors are, go look them up! Note that the
assembly report has a count of the number of bad Tines (0003) in its
first part.

If you make a listing, the errors will appear mixed in with the
listed lines. When the assembled operands are examined, note that
MACROTEA tries to fill them in with "reasonable" values. The LDA
ends up as A9 05, and the STA and ROR address location zero.

MACROTEA will stop for really serious errors:

25 .BA MOTHER

. AS
0010 LDA #5*5
!0A AT LINE 0010
0025 .BA MOTHER

104 AT LINE 0025

So, you just gotta fix these ones first.........

Once you are error-free (from the viewpoint of MACROTEA), the
interesting and challenging task of a multi-file assembly is presented
to pique your imagination.

To illustrate .CT, enter and PUT these two files onto one tape:

CL

10BEES LDA 00
20 LDA 11

30 JMP HONEY
40 .CT "

Copyright © 1980, Skyles Electric Works

pacE 116

PUT "ONE"
(etc)

CL

TOHONEY STA 22
20 STA 33

30 JMP BEES
40 .EN

PUT "TWO"
(etc)

Note that each file cannot be assembled by itself due to the labels
BEES and HONEY.

Now rewind the tape, and follow this sequence:
CL

10 CF

AS LI

PRESS PLAY ON TAPE #1
0K (do so)

READY FOR PASS 2 (only with Tinking assembler and cassette
when there are no more .CT files)

M (cursor is only indicator of completion
with cassette)

Now rewind the tape, and continue with PASS:

CL (If you forget this step, MACROTEA will
continue with the file TWO which happens
19 .ET **° to be in the workspace until you CLEAR it.)
PASS
0010 LT "

PRESS PLAY ON TAPE #1
0K (be obliging)

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 117

9800-AD0000 0010BEES LDA 00
9803-AD0OB0O0 0020 LDA 11
9806-4C0998 0030 JMP HONEY

0040 L1 %
9809-8D1600 0010HONEY STA 22
980C-8D2100 0020 STA 33
980F-4C0098 0030 JMP BEES

0040 .EN
LABEL FILE: [/ = EXTERNAL]
BEES=9800 HONEY=9809
//0000,9812,9812

You may of course put more than two files on a tape to be joined together
via the .CT pseudo-op.

To instill a sense of caution with .CT, you are advised to try these
mistakes out:

ERROR ONE: Rewind the tape, and again start the assembly. When
you arrive at READY FOR PASS 2, don't clear the workspace. Enjoy the
spectacle of MACROTEA's assembling the file TWO only!

ERROR TWO: Using a scratch tape, CLEAR the workspace, enter the
10 .CT line (without the two quote marks), and then PUT "TURKEY".
When finished, put the first tape back into the recorder and try
an assembly. MACROTEA will print the word TURKEY after the OK
message, and will then search for TURKEY (and ignore your file ONE).
The .CT by itself does not update the filename stored by MACROTEA.
(A GET "ONE" would leave ONE in the filename area, etc...) The moral
is to always specify a filename, even if it is the humble "".)

ERROR THREE: Make two files; in the first one define the macro
FOOH and in the second file, place a call to FOOH. When this is
assembled, there will be an error in the second file which tells you
that FOOH isn't a legal op-code. Macro definitions must be repeated
for each file that uses their macro calls.

© 1980, Skyles Electric Works

pacE 118

Disk Examples:

To show .CT on disk, first create & save these two files:

GET "TAKE ONE"
00, 0K,00,00

TAKE ONE

PRINT

0010TOFU LDA #SAA

0020 LDA #3BB

0030 LDA #$CC

0040 .CT "0:TAKE TWO"

GET "TAKE TWO"
00, 0K,00,00

TAKE TWO

PRINT

0010BEANS LDA #$DD

0020 LDA #$EE

0030 LDA #SFF

0040 .EN "O0:TAKE ONE"

To make this operate, simply GET "TAKE ONE" and then assemble:

GE "TAKE ONE"
00,0K, 00,00
TAKE ONE
AS LI
00, 0K,00,00
0:TAKE TWO
00, 0K,00,00
0:TAKE ONE
7F83-A%AA 0010TOFU LDA #$AA
7F85-A9BB 0020 LDA #$BB
7F87-A9CC 0030 LDA #$CC
00, 0K,00,00
0:TAKE TWO
0040 .CT "0:TAKE TWO"
7F89-A9DD ON10BEANS LDA #$DD
7F8B-A9EE 0020 LDA #$EE
7F8D-ASFF 0030 LDA #$FF
0040 .EN "O:TAKE ONE"
LABEL FILE: [/ = EXTERNAL]
TOFU=7F83 BEANS=7F89
/ /0000, 7F8F, 7F8F

Pass 1 looked at both files, and then Pass 2 looked at them again -
this time printing the assembly listing.

Copyright © 1980, Skyles Electric Works

PAGE 119

If you PRINT the workspace, the last module, TAKE TWO is present.
Be sure to:have the first module in the workspace when you start a
multifile assembly!

(If you try assembling TAKE TWO by itself, it will happily assemble
starting at $9800. Since there was no .CT, the filename after the .EN
was ignored and a single workspace assembly results.)

Do take some care with disk multifile assemblies. Here is one
kind of disaster:
GET "TAKE ONE"

00, 0K,00,00
TAKE ONE
PR

0010 LDA #$AA
0020 LDA #$BB
0030 LDA #$CC
0040 .CT "O:TAKE ONE"

As far as I know, this will run until the disk drive fails.... Of
course you will usually be stopped with a duplicate label error....

As with the tape version, .CT replaces the workspace with the
contents of each file as the assembly proceeds. The cautions re macros
still apply to disk assemblies using .CT.

Copyright © 1980, Skyles Electric Works

pace 120

LOCATION OF CODE

.BA Begin Assembly at the address specified in the
_— operand.

.0S During Pass 2, load the machine language result
—t into memory.

0C On Pass 2, don't load the machine language code
e into memory.

MC Load the machine language code starting at the

operand, which may differ from the address
specified in .BA. (Offset loading)

The object of an assembler, of course, is to produce the machine
language code which was specified by the mnemonics, etc of the source
text. The pseudo-ops included here are used to tell MACROTEA where,
how, and whether the machine code is to be placed in the PET's memory.

The .BA pseudo-op instructs MACROTEA to set the program counter
to the value of .BA's operand. This permits the code to be assembled
with an arbitrary starting address. For example, .BA $400+2 will
te11 MACROTEA to assemble starting at $402.

.BA may be used as often as needed to build blocks of code arranged
in any place and order in memory. If there is no .BA in the source text,
MACROTEA assumes the value $9800, which will place the code in the user's
RAM at $9800-9E7F.

Normally, MACROTEA will not put the assembled code into the PET's
memory - a nice touch, for most programs start their life with many
errors. When it comes time to test the code, the .0S pseudo-op will
tell MACROTEA to place the subsequent code into the PET's memory.

The .0C pseudo-op will tell MACROTEA to not load the following
code into memory. Any number of .0S and .0C pseudo-ops may be placed
in the source text to load selected parts of the program.

The .MC pseudo-op tells MACROTEA to load the code into the
memory starting at the address provided in the operand. This permits
code to be placed in a location different from the address it is
intended to run at.

Some care must be used with .MC. When MACROTEA sees the .BA pseudo-op,
the loading address is reset to the .BA's operand - in other words,
.BA cancels any prior .MC's.

You may use .MC as you desire to place code in different places.

Each .MC will reset the loading counter and the following lines of
code will be placed accordingly.

Copyright © 1980, Skyles Electric Works

PacE 121
One way to visualize these pseudo-ops is via three values some-
where within MACROTEA:

1) A program counter, used to decide the vdlues of operands
and labels.

2) A loading counter, used to place the assembled code into the
PET's memory.

3) A loading flag, which if TRUE, permits the loading of assembled
code into the memory.

Then we have:

.BA sets both the program counter and the loading counter to the
value of .BA's operand. ;

.MC sets the loading counter to .MC's operand.
.0S makes the loading flag TRUE.
.0C makes the loading flag FALSE.

Examples:

Some of these examples will require the use of the Monitor. See
the Monitor section for explanations of the Monitor's commands.

Let's start with this program:

AS LI

9800-A%01 0020 LDA #01
9802-A902 0040 LDA #02
9804-A903 0060 LDA #03

0100 .EN
(We will skip the Symbol Table & Assembly reports)

Note that the assembly's program counter started at the cefault
value of $9800.

To illustrate what .BA does, let's add a line,
10 .BA $300

and assemble again:

AS LI
0010 .BA $300
0300-A901 0020 LDA #01
0302-A902 0040 LDA #02
0304-A903 - 0060 : LDA #03
0100 .EN

Copyright © 1980, Skyles Electric Works

PAGE 122

Here the assembly started at $0300. If you wish to add a label or
two, it is simple to see the values of the labels change.

.BA may be used more than once - try this one:

10 .BA $0350

30 .BA $0250

50 .BA $0300

AS LI
0010

0350-A901 0020
0030

0250-A902 0040
0050

0300-A903 0060
0100

.BA $0350
LDA #01
.BA $0250
LDA #02
.BA $0300
LDA #03
.EN

And here you can see that MACROTEA follows the instructions of .BA
exactly, and will assemble code to live anywhere. Be careful of one
thing (not usually a problem for PET owners):

10 .BA SFFFF
20 LDA #01
30 LDA #02
40 .EN

AS LI

0010
FFFF-A901 0020
0001-A902 0030
0040

.BA $FFFF
LDA #01
LDA #02
.EN

MACROTEA will wrap around if any of its values exceeds $FFFF - this
includes operands, program counters, and loading counters. Bewares
of this if you intend to down-load from the PET to a KIM or other 6502

system....

To observe the action of .0S and .0C, we need to prepare some
memory - so get into the Monitor via BREAK and set up the pattern

below:

M 0300-0320

0300 20 20 20 20 20 20 20 20
0308 20 20 20 20 20 20 20 20
0310 20 20 20 20 20 20 20 20
0318 20 20 20 20 20 20 20 20
0320 20 20 20 20 20 20 20 20

This pattern will already be in place if you haven't used the first
tape unit for file operations. (We are using part of the First Cassette

Buffer for these examples.)

Copyright © 1980, Skyles Electric Works

PAGE 123

Using X and SYS 41104, return to MACROTEA's Editor and enter
this short program:

10 .BA $300
20 LDA $11

30 LDA $22

40 .EN

When you assemble this, (Do this one yourself!) MACROTEA will produce
‘the following bytes of code starting at $0300: AD 11 00 AD 22 00.
When we use the Monitor, however, the code at $0300 has not changed
from the pattern above.

To actually load the code, the .0S pseudo-op must be used:
15 .0S

After assembly, we go back to the Monitor and here's what you will
see: :

M 0300-0310

0300 AD 11 00 AD 22 00 20 20
0308 20 20 20 20 20 20 20 20
0310 20 20 20 20 20 20 20 20

Now, change the pattern back to the 20's in the 0300 line, go
back to the Editor, and;

15 (delete Line 15)
25 .05

This moved the .0S to a position between the two LDA's. Assemble,
and the Monitor will reveal:

M 0300-0307
0300 20 20 20 AD 22 00 20 20

MACROTEA has loaded the second LDA but not the first one. Remember
that an assembly assumes that the code is not to be Icaded into memory -
so MACROTEA starts loading the code when the .0S was seen.

Again, clear the memory to the 20's pattern - and in the Editor,
change our program to:

10 .BA $300
15 .08

20 LDA $11
25 .0C

30 LDA $22
40 .EN

Copyright © 1880, Skyles Electric Works

PAGE' 124

Back at the Monitor, the 0300 line is now:
0300 AD 11 00 20 20 20 20 20

When MACROTEA saw the .0C in 1ine 25, the loading was suspended. You
can easily verify that other combinations of .0S and .0C will work as
expected.

At the risk of being tedious, let's work this exercise yet again
to illustrate the operation of .MC, which permits the loading of code
into Tocations the code isn't assembled for.

The example program is:

10 .BA $300
20F00 JMP FOO
30BAZ JMP BAZ
40 .EN

This will generate the machine language sequence: 4C 00 03 4C 03 03.
Now, go to the Monitor and make sure that $0300-$0320 are set to 20's.
To illustrate the action of .MC, add these lines:

15 .08
16 .MC $0310

Now assemble and take a Took with the Monitor. (NOTE: In the assembly
report you will see

//0000,0306,0316
which shows that the loading counter is 10 more than the program counter.)
The Monitor reveals:
M 0300-0320

0300 20 20 20 20 20 20 20 20
0308 20 20 20 20 20 20 20 20
0310 4C 00 03 4C 03 03 20 20
0318 20 20 20 20 20 20 20 20
0320 20 20 20 20 20 20 20 20

If you examine the code carefully, the JMP at 0310 is
to 00 03, or $0300 as we humans view things. The code has been
assembled to start at $0300, and loaded starting at $0310.

Using MACROTEA, you can try the following short programs
and see if they do what you expect them to. Remember the rules stated
Jjust before this set of examples.

1) 10 .0S 2) 10 .0S
20 .MC $0300 20 .BA $0300
30 .BA $0350 30 LDA #A1l
40 LDA #FF 40 .MC $0350
50 .EN 50 LDA #A2
60 .EN

Copyright © 1980, Skyles Electric Works

PAGE 125

HOUSEKEEPING

.BY Store bytes of data.

.DS Define storage space.

.S1 Store address. (Internal Address)

.DI Define label value. (Internal Address)

SET Redefine a label value. (NOTE: This is a directive
— and not a pseudo-op)

The pseudo-ops described here are used to simplify the definition
and use of storage areas and "canned" data by the program being
assembled. Also included are some pseudo-ops and one directive used
for definition and storage of address values.

NOTE: MACROTEA's ancestor, the Macro Assembler by Carl Moser, had

some facilities for the relocation of code. This resulted in two
varieties of labels and addresses. "Internal” meant that the relocater
could change these values when the code was moved. "External" values
were not to be changed. Relocation is not provided in MACROTEA. If you
must move code, use .BA, .MC and .0S to generate the code in a "safe"
area, and then use the Monitor's T command to move it. Most situations
that imply relocation aré just as easily dealt with by reassembling.

DIGRESSION: The evolution of ROM is the primary reason that relocation

is obsolete. In an all-RAM system (as the computers of yore usually were),
you must first load the assembler, then load the source text, and

finally assemble. The result was usually a paper tape of the object code.
To debug this, you had to re-boot the machine and load the object tape.
Then came patching, which involved twiddling the front panel instead of
using a Monitor. Since re-assembly meant first loading the text editor,
loading the source, punching a new source, loading the assembler,

reading the source and finally making a.new object tape, it wes far
simpler to load via a relocating loader and then to make the patches.
Isn't nostalgia neat?

Here are some brief examples to refer to while reading the following
descriptions:

.BY 100 $100 %1101 'HO HUM'
DS 25

.SE FUBAR

.SI FUBAR+2

TAG .DI $2345

TAG2 .DI TAG+5

SET TAG=$5432

PAGE 1260

The .BY pseudo-op places defined data values into memory. After the
.BY one or more values may be placed. Each value may be one of:

Decimal for example, 100 101 102
Hexadecimal for example, $FF $FE $FD
Binary for example, %0001 %0010
ASCII for example, '"HELLO THERE'

For ASCII values, the single quote (or apostrophe) must surround
the string to be stored. This facility is intended for the normal ASCII
characters, and though most PET graphics characters can be included in
the string, not all will be correctly entered by the Editor.

Since this pseudo-op defines bytes of memory, only the 8 least
signifigant bits of a value will be stored. (More concisely, the
value modulus 256 will be stored.)

The .BY pseudo-op will accept expressions and use their 8 least
signifigant bits for the stored value. Perhaps there is a use for
this?

Each value must be separated from the others with a space, and
at least one value must be present after the .BY pseudo-op.

The .DS pseudo-op defines a block of memory for the program's use.
The value of the operand after the .DS indicates how many bytes are
reserved. In most cases, the line containing .DS will be labeled. If the
.0S pseudo-op is in effect, MACROTEA simply skips the required number
of bytes, and no initialization is performed. Always write before you read
any locations in a .DS block.

The operand of .DS may be any legal MACROTEA expression.

The « .SI pseudo-ops will evaluate the operand and store
the result in the Low-High form required by the 6502 for addresses.
The value will be placed in the next two bytes of memory. Nearly all
instances of .SE and .SI will be in the zero page.

It is often necessary to assign an arbitrary value to a Tabel -
for example, the PET's display at $8000 might be labeled SCREEN. The
.DI pseudo-op assigns the value of the operand to the label. .DI must
be on a labeled 1ine in the source text, for it is this label which is
given the operand's value.

The SET directive permits the reassignment of a label's value.
The new value for the label will be used in all lines following the
SET directive. The label must be defined prior to the SET directive.

Copyright © 1880, Skyles Electric Works

PAGE 127

Examples:

To illustrate the .BY pseudo-op, here is a small program:

10 .BA $1001

20START .BY 100

30 .BY $FF

40 .BY %10101010

50 .BY 'SOMETHING NEW HERE'
60 .BY START-4090

70 .EN
AS LI
0010 .BA $1001
1001-64 0020START .BY 100
1002-FF 0030 .BY $FF
1003-AA 0040 .BY %10101010
1004-534F4D 0050 .BY 'SOMETHING NEW HERE'
1007-455448
100A-494E47
100D-204E45
1010-572048
1013-455245
1016-07 0060 .BY START-4090
0070 .EN

By careful examination you can see that the values 100, $FF and
%10101010 were correctly computed and stored in locations $1001 to $1003.
More detailed examination shows the storage of the string in $1004
through $1014. MACROTEA will assemble strings in 3 byte blocks for
as long as required.

Line 60 contains an expression whose value is 7 ($1001 is 4097 in
decimal). MACROTEA successfully evaluated it and stored the result.
(NOTE: Though MACROTEA didn't place the results in memory as .0S wasn't
in effect, it is the ultimate result that is of interest here and a lot
simpler to write 'store'.)

Values may be combined in one .BA for convenience:

AS LI
9800-65FFOE 0010 .BY 101 $FF %1110 'HI’
9803-4849

0020 .EN

And at least one value is required:

10 .BY

AS

: 0010 «BY
'0A AT LINE 0010

Copyright © 1980, Skyles Electric Works

PAGE 12 8'

To illustrate .DS, first go into the monitor and set $0300 to
$0320 with the value $20 (See the examples on .LC and .LS.)
Then enter and assemble this program:

10 .BA $300
20 .0S

30 LDA $FFFF
40 .DS 10

50 LDA S$EEEE
60 .EN

If you look at the assembly listing, there is a gap between $303
and $30D at 1ine 40. MACROTEA advanced the program counter by 10
at this point. We will soon see that the Toading counter was also
advanced.

Now, go into the monitor and examine $0300 to $0310:
M 0300-0310

0300 AD FF FF 20 20 20 20 20
0308 20 20 20 20 20 AD EE EE
0310 20 20 20 20 20 20 20 20

If you count the number of 20's after the AD FF FF, there are ten
of them, as specified by the .DS operand in line 40. If you use the
Monitor to change these bytes to some other value & re-assemble,
the new values will remain unchanged.

The moral of this one is to understand that:

THE SPACE CREATED BY .DS WILL USUALLY BE FULL OF GARBAGE!

So, be sure your program writes to these locations before reading them.

.DS accepts expressions, and you can easily check this by making
these changes & reassembling, Monitoring, etc.

15FX .DI 5
40 .DS FX+FX+FX

When the occasion arises to store addresses as data, .SE and
.SI come to the rescue. Here is an assembled example:

AS LI
0010 .BA $ABCD
ABCD-EA 0020KNURD NOP
ABCE-CDAB 0030 .SE KNURD
ABDO-COAB 0040 .ST KNURD-$D
0050 -EN

Copyright © 1980. Skyles Electric Works

Copyright

PAGE 129

The label KNURD has the value $ABCD, which is stored in $ABCD
and $ABCE as CD AB, which is the 6502's address format of Low, High
bytes of the address. Line 40 shows the use of an expression and
the .SI pseudo-op instead.

.DE and .DI are very handy to use - it permits you to use labels
to name values which fall outside of the address range occupied by the
program. Here is an example (which actually does something!) that
shows how nice this is:

10 .BA $0300

20 .0S

30SCRN .DE $8000
40LINE .DI 40

50 LDA #00

60 LDX #00
70NEXT STA SCRN+LINE+LINE+LINE,X
80 INX

90 CPX #LINE

100 BMI NEXT

110 BRK

120 .EN

Line 30 defines SCRN to be the start of the PET's screen at $8000.
Line 40 tells us that LINE is set to 40, the number of characters in
one line on the PET's screen.

In line 70, we combine SCRN and LINE to start placing $00 on the
fourth 1ine of the PET's display. Here, SCRN and LINE serve to specify
an address. In line 90, LINE is used to check the Toop counter, X
for the branch in line 100. LINE is used as the value 40 in this part
of the program.

If you assemble this program, and in the MONITOR use G 0300,
a line of "@" will appear on the screen's fourth line. (This will end
up on the top line if, as usual, the screen scrolls after executing
the program.)

Simple challenge - change line 90 to fill three lines with the "@"
character. Harder - how do you fill three lines with the "!"? Worse -
Why won't another change to line 90 for four lines full work correctly?
(Hint: Read what CMP does.....)

If a label was defined by .DE or .DI, its value can be changed
with the SET directive. Here is an assembled example of this:

AS LI
0010KICKAPOO .DI $1000
9800-AD0010 0020 LDA KICKAPQO
' 0030 SET KICKAP00=$2222
9803-AD2222 0040 LDA KICKAPOO
0050 .EN

© 1980, Skyles Electric Works

pacE 130

LABEL FILE: [/ = EXTERNAL]

KICKAP0Q=2222
//0000,9806,9806

Line 10 defines KICKAPOO to be $1000, and this is reflected in
the operand for the LDA in line 20. When the SET in line 30 is executed,
KICKAPOO becomes $2222, and this is seen in the assembled code for
Tine 40.

If 1line 10 is deleted, and assembly attempted, we get:

AS LI
0030 SET KICKAPO0=$2222
104 AT LINE 0030

Take note that the !04 error message is listed differently in the error
messages 1ist. View it as "Can't evaluate operand".

The operation of SET can be explained by the following sequence:

1) During Pass 1, when SET is encountered, evaluate the
operand & change the symbol table's value for the Tabel.
If the label before the = cannot be found in the Symbol
Table, there is an error. If any labels in the expression
after the = cannot be found in the Symbol Table, this is
also an error. 3

2) During Pass 2, when the operands for the op-codes are
being calculated from the Symbol Table, re-execute the
SET directive when found.

The assembly below illustrates the resulting hazard:

AS LI
8800-AD0001 0O010FUNNY LDA $100
9803-AD5555 0020 LDA FUNNY
0030 SET FUNNY=$1234
9806-AD3412 0040 LDA FUNNY
0050 SET FUNNY=$5555
0060 .EN

We would expect the assembled Line 20 to become AD 00 98
which is the address of the label FUNNY before the SETs were
executed. Why is it AD 55 557 During Pass 1, the final value for
FUNNY was $5555 due to the SET in line 50. Pass 2, which provides
the operands, looked up FUNNY in the Symbol Table for line 20
and discovers the value $5555 and then places this in the operand.

When we arrive at line 40, FUNNY was changed to $1234, and
Pass 2 now uses this as the operand.

Copyright © 1980, Skyles Electric Works

PaGE 131

If you use .DI to define a label which is later SET,
this problem won't arise, for the . .DI pseudo-ops will
establish the value of the label in both passes of the assembly.

In normal use, there are two justifications for the SET
directive:

1) There isn't any more room in the Symbol Table. (unlikely)

2) A label must be changed due to a conditional assembly
directive.

When a program contains many label values, it is possibie that
a "circular" definition for a label can exist. MACROTEA will then
give wildly unreasonable values for "circular" labels. Let's watch
this in action:

AS LI
0005 .BA $0200
0010MAN .DI MAN+MAN
0020 .EN

LABEL FILE: [/ = EXTERNAL]
MAN=0800

The story goes like this: During Pass 1, MACROTEA finds MAN at
the program counter's value of $200. This is put into the Symbol Table
and the operand for the .DI pseudo-op is now evaluated. Well, $200+$200
is $400, and the Symbol Table's entry for MAN is changed to $400.

Pass 2 repeats this story - since no new entries are placed into
the Symbol Table, only the operand is evaluated, so $400+$400 becomes
$800, and MAN is updated again - to $800.

It is clear that any complex labelmaking will give wild and hairy
results with this double-evaluation process. When you finish reading
abou% SET, see if you can determine what 15 SET MAN=MAN+MAN+3 will
do. (urk!)

Copyright © 1980, Skyles Electric Works

PAGE 132

CONDITIONAL ASSEMBLY DIRECTIVES

1EQ Assemble if value of operand is zero.

IMI Assemble if value of operand is less than zero.

INE Assemble if value of operand is not zero.

A=

IPL Assemble if value of operand is equal to or more than zero.
*kk End of conditional block.

As we all know, the passage of time brings changes to our lives
and possessions.In the universe of PET, for example, there are two
versions of the PET ROM operating system, and hints of more changes to
come.

If you have either changed from "old" to "new" ROMs, or have written
a BASIC program for operation on both versions of the PET, you know that
many important values, such as the BASIC program's memory pointers, or
the keyboard input buffer, have been moved - and your BASIC program must
contain some code to account for these changes. (With the loss of some
memory space for this otherwise "useless" code.)

In MACROTEA, this problem can be circumvented by the use of the
conditional assembly directives. Use the .DI or .DE pseudo-op to define
a label, MODEL to the value of 1 or 2. Then collect all of the values
which depend on the PET's ROM version and build two blocks. The first
block would be a series of .DE or .DI which define the values for the
"01d" ROM, and the second block does the same for the "new" ROM. By using
the IFE directive, the first or second block will be assembled according
to the value of MODEL. Here is a brief diagram:

10MODEL .DE (insert 1 or 2 depending on which ROM you use)
20 IEQ MODEL-1

3D ssnatas

40 ...ounnn (1abel defintions for "old" ROMs)

60 ek
90nnnn (1abel definitions for "new" ROMs)

120 wconsons o (now for the program proper)

The 1EQ, IMI, INE and IPL directives evaluate their operands,
and if the value of the operand agrees with the appropriate condition,
the following code will be assembled. If the operand does not agree
with the condition, MACROTEA will ignore the following lines until
the *** for "end of block" is seen.

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 133

You can "nest" conditional blocks as much as you want in MACROTEA.

If "extra"

block ending markers are seen, MACROTEA will ignore them.

However, be warned - the MACROTEA's conditional assembly mechanism is

very simpl

e: If the condition is FALSE, skip lines until the first

*** marker is seen. Any conditionaldirectives within the skipped

portion wi

11 be ignored. If the condition is TRUE, keep on assembling

just as if nothing has changed. Ignore any *** markers.

The mnemonics chosen for the IF directives follow the 6502 branch
instruction conventions. The only difference is that MACROTEA computes
the value of the expression as a 16 bit signed integer and then applies
the test condition. Here is a suggested way of remembering these:

IEQ

INE
IPL

IMI

- Examples:
Just

If EQual to zero.
If Not Equal to zero.
If sign bit PLus. (ie, sign bit not set.)

If MInus. (ie, sign bit is set.)

to check out the various conditional directives, try this

short program:

FO CL

PR

0010TASK .DI 5

0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120.
0130
0140
0150
0160

© 1980, Skyles

LDA #11
IEQ TASK-1
LDA #22
sede

IMI TASK-2
LDA #33

% k%

INE TASK-2
LDA #44

*k Kk

IPL TASK-2
LDA #55

* k%

LDA #66
.EN

Elertric Works

PAGE 134

AS LI

0010TASK .DI 5
9800-A908 0020 LDA #11

0030 IEQ TASK-2

0040 LDA #22

0050 ***

0060 IMI TASK-2

0070 LDA #33

0080 ***

0090 INE TASK-2
9802-A92C 0100 LDA #44

0110 **+

0120 IPL TASK-2
9804-A937 0130 LDA #55

0140 **+
9806-A942 0150 LDA #66

0160 .EN

As expected, lines 20 and 150 were assembled. TASK-2 evaluates
to 3, so lines 40 and 70 were skipped, and 1ines 100 and 130 were
assembled. If you change line 10 to other values, a different pattern
of assembly will appear:

Value of TASK TASK-2 IEQ IMI INE IPL
5 3 No No Yes Yes

2 0 Yes No No Yes

0 -3 No Yes Yes No
$FFFF $FFFD No Yes Yes No
$8005 $8003 No Yes Yes No
$8001 $7FFF No No Yes Yes

The first three values of TASK assemble as expected with the
different conditional directives. The last three values tell us that
MACROTEA sees the most signifigant bit in a 16 bit value as a sign
bit for these directives - so all values over $7FFF (32767) are
evaluated as negative. (In practical terms, this has little effect
as conditional assemblies aren't usually made by testing address values.)

Here is an example of a nested condition:

0010TAG .DI O

0020BAG .DI 0

0030 LDA #11

0040 INE TAG: & sonesmnsinii sasassimas vos
0050 LDA #22 !
0060 INE BAG !
0070 LDA #33 ! Inner Condition ! -Quter Condition
0080 *** s ravascal !
0090 LDA #44 !
D100 BER = v seweEaaes s |
0110 LDA #55

0120 .EN

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 135

When this is assembled with different values for TAG and BAG, we end
up with:

TAG BAG Line 50 70 90

0 0 No No Yes
0 1 No No Yes
1 0 Yes No Yes
1 1 Yes Yes Yes

Study this carefully! In most cases, nesting conditional directives
will not operate as you might expect. MACROTEA is very simpleminded, and
as mentioned earlier, it skips code until the first *** marker it finds.
Any conditionals within skipped code are ignored, and any extra *** markers
are ignored.

When you nest conditions, try to not place any code after the ***
in the innermost condition - that is, have the entire set of nested con-
ditions terminate at the same *** marker.

© 1980, Skyles Electric Works

PAGE 136

MACROS

.MD Begin a macro definition.

RS

ME End a macro definition.

ES When 1isting the assembly, 1ist the macro's code where
— a macro is referenced. (This is the default setting.)

I 2Lt When Tisting the assembly, don't 1ist the code for any
— referenced macros.

NOTE: A discussion of macros & why they are useful is placed
below. For reference reading, skip ahead to the section titled "The
MACROTEA Macro Facility"

What Is A Macro & Why Are They Useful?

When you write a long program, or one that does a 1ot of highly
similar operations, there will be segments of code which are repeated,
but with enough variation to discourage writing a set of subroutines.
Though a subroutine will often save some memory space, there are two
major disadvantages:

1) A subroutine requires 12 cycles for the call and later return.

2) If a subroutine is handling changing data, you must arrange to
pass the data to the subroutine. For small amounts of data, the
6502 registers must be set up. For medium amounts of data, you
can place the data after the subroutine call, and within the
routine manipulate the stack to first get the data using the
stacked return address as a pointer and when finished changing
the stacked address to return to some real code. For larger
amounts of data, the registers are set up as a pointer to the
data.

You pay a double price with data in that you must first set up for
the subroutine, and when executing the subroutine, it must first fetch
the data. This naturally takes more space & time.

Most repeated sequences of code perform standard operations on
data placed at different addresses. If these addresses are directly
assembled as operands for the instructions, the resultant code is
usually more compact and faster than handling the addresses as data
and then handling the data. Here is an example:

Suppose we want to add three numbers together:

CLC

LDA NUMBER1
ADC NUMBERZ
ADC NUMBER3

Copyright © 1980, Skyles Electric Works

PAGE 137

This sequence takes 10 bytes and 14 cycles. Each time we want to do
this, the code must be repeated with different values for NUMBERI,
NUMBERZ and NUMBER3.

Now, let's see how to do this with a subroutine. When the
routine is called, the numbers are in the A, X, and Y registers. Here
is the routine and the calling sequence:

;ADDITION ROUTINE
ADD STX TEMPI

STY TEMP2

CLC

ADC TEMP1

ADC TEMP2

RTS

;TO CALL THE ADDITION ROUTINE
LDA NUMBER3

TAY

LDA NUMBER2

TAX

LDA NUMBERI

JSR ADD

The routine itself requires 16 bytes (Remember that 2 bytes are
nee?ed for TEMP1 and TEMP2.) The time required (less the RTS) is 18
cycles.

The setup & call requires 14 bytes and 28 cycles (16 for setup,
12 for the call.) This is clearly a loser, no matter how many times
the subroutine is called. The setup alone is more costly than doing the
Jjob directly.

A somewhat less costly approach is via the stack:

;ADDITION ROUTINE
;ASSUMES VALUES ON STACK JUST AFTER THE
;SUBROUTINE CALL
ADD PLP
STA *00
TAX
PLP
STA *01
LDY #00
cLC
LDA (00),Y
INY
ADC (00),Y
INY
ADC (00),Y
TAY

ic Works

PaGE 138

CLC

TXA

ADC #03

BCC HOP

INC *01
HOP LDA *01

PHA

LDA *00

PHA

TYA

RTS

The saving obviously isn't in the subroutine - it is in the
call:

JSR ADD
.BY NUMBER1 NUMBERZ NUMBER3

The subroutine call only takes 6 bytes, which saves 4 bytes over
doing it directly. However, note these small points:

1) If NUMBER1, NUMBER2, and NUMBER3 are truly data which
may be written into, the code can't be placed into ROM.

2) The subroutine takes around 100 cycles for all of the
funny manipulations needed.

3) The space for the subroutine takes 36 bytes, which means
you must call it at least 9 times to have a net savings
of space. (Not to mention the 2 bytes in the zero page
needed for the indirect pointer.)

A macro is an assembler construction that lets you give a section
of code a name, which can then be used just like any other Op-Code
or Pseudo-Op. This would be just a mere convenience except for a special
feature - macros permit dummy variables. Here's our addition example
in macro form:

!11ADD .MD (A B C)
CLC
LDA A
ADC B
ACC C

.ME
The call of the macro is quite simple:
ADD (NUMBER1 NUMBER2 NUMBER3)

When MACROTEA sees the call for ADD, the values for NUMBERIT,
NUMBER2, and NUMBER3 are substituted for A,B, and C, and code identical
to our first sequence is generated. The next time ADD was used, we
might see:

ADD ($101 FOOBAR+43 SIMPL-3)

Note that expressions are legal in the macro call, and that now a different
set of values will be assembled in the places of A, B, and C.

Copyright © 1980, Skyles Electric Works

PAGE 139

The MACROTEA Macro Facility

The pseudo-ops .MD and .ME are used to define a macro. Here is
a short example:

111ADD .MD (A B C)
CLC
LDA A
ADC B
ADC C
.ME

The name of this macro is ADD. The three exclamation points are used
by MACROTEA to distinguish the macro's name from an ordinary label. These
are required.

After the .MD pseudo-op comes the arguments list. If the macro doesn't
use any arguments, this may be omitted.

Macros which use arguments must have the dummy labels within a
pair of parenthesis, and the labels must be separated with spaces. Don't
use commas! The dummy labels can then be used within the macro's definition
just Tike any other label.

When a macro is called, it is placed in the source text like any
normal op-code. If the macro uses arguments, the macro's call must
have the same number of arguments. The arguments must be used in the
same order as in the definition (or thou shalt have much confusion).
The arguments in a macro call may be expressions. In a macro definition,
only labels are permitted as arguments. Here are some calls to our ADD
macro:

ADD (1 2 3)
ADD (VALUE1 VALUE2 VALUE3)
ADD (OFFSET TAG+5 LINK+LINK)

Macros may be "nested", that is, one macro can refer to another
macro in the first macro's definition. For example, our ADD macro
could be extended:

! 1 1DOUBLEADD .MD (V1 V2 V3)
ADD (V1 V2 V3)
STA TEMP1
ADD (TEMP1 TEMP1 ZERO)
.ME

Here we assume that TEMP1 is a temporary memory location and that
the cell at ZERO has the value $00.

The maximum depth of "nesting" is 32 levels. In most cases, if

you exceed 32 levels this indicates a programming error, such as
a circular macro definition.

Copyright © 1980, Skyles Electric Wors

PacE 140

If you use any labels within a macro, they should be preceded
with the ellipsis (...). If the ellipsis is omitted, and the macro
is called more than once, you will receive the !06 error for duplicate
labels. Here is an example:

I1ICRLF .MD (CHAR)
LDA CHAR
CMP #13
BNE ...DONE
JSR PRINTCHAR
LDA #10
JSR PRINTCHAR
...DONE .ME

If the contents of CHAR are a carriage-return, CRLF will print the
carriage-return and then a linefeed. If not, nothing is done. (A more
practical routine would place the label DONE at the last JSR PRINTCHAR
& the macro would now be called PRINTIT.)

The ellipsis before DONE defines the label DONE as "local" to
the macro, permitting more than one call of the macro in the source
program. Note that if all labels were local to a macro there would be
a problem with the label PRINTCHAR.

Due to the way in which MACROTEA tags labels used in macros, if
you nest different macros which use the same labels (properly dotted ...)
you might still get the !06 error. The cure to this is to use different
label names within each different macro.

In summary on macro labels:

(LABEL) This is a parameter, and must appear in the
arguments list as a label.

LABEL This is a "global" label and the label should be
defined outside of the macro.

...LABEL This is a "local" label. If you nest macros, use
different ...LABELs within each macro.

When macros are used, take note that the macro's definition must
come before you make use of that macro in the source text. Though nested
macros aren't subject to this limitation (That is, you can define an
inner macro after its use in another macro) inside other macro definitions,
all macros that are used in a macro call must be defined before any of
them are called.

When multiple files are used in an assembly, the macro definitions
must be repeated. This comes from the fact that MACROTEA completely
clears the workspace before loading each file in a multi-file assembly
and that the source text is used for the macro's definition each time
a macro is called. (When a macro is called, MACROTEA finds it in the
source text in the workspace & reassembles accordingly. A newly loaded
file will overwrite any old macro definitions.)

Copyright

PAGE 141

As a result, you can use different macros with the same name in
multifile assemblies. Of course, it's up to you to keep all things
straight. '

Another thing to bewares of is that you cannot define one macro
within another macro's definition. In most cases this is no problem.

When MACROTEA reaches Pass 2, the assembly listing is generated,
and a decision must be made concerning the code that results when a
macro is called. The .ES and .EC pseudo-ops control an "expansion flag"
for this purpose. Use of .ES will make MACROTEA list the assembled
code in the listing, and use of .EC will not 1ist the macro generated
code.

When Pass 2 is started, the "expansion flag" is set by default to
"off" and no expansion will be provided until the .ES pseudo-op is
seen. Unlike .LS and .LC, the "expansion flag" is always set to "off"
at the start of Pass 2. In practice, just be sure the .ES is placed
just before or after the macro definitions.

Examples:

Since we are already familiar with ADD, let's use it for the first
example:

FO CL

PR

0010!!fADD .MD (X Y Z)
0020 CLC
0030 LDA
0040 ADC
0050 ADC
0060 .ME
0070 STA $100

0080 STX $101

0090 STY $102

0100 ADD ($100 $101 $102)
0110 .EN .

N =< ><

When this is assembled, we see:
AS LI

0010!!!ADD .MD (X Y Z)

0020 CLC

0030 LDA X

0040 ADC Y

0050 ADC Z

0060 .ME
9800-8D0001 0070 STA $100
9803-8E0101 0080 STX $101
9806-8C0201 0090 STY $102

0100 ADD ($100 $101 $102)

0110 .EN

© 1980, Skyles Electric Works

PAGE 142

LABEL FILE: [/ = EXTERNAL]

X=0100 Y=0101
2=0102

//0000,9813,9813

The reason for the dummy labels X,Y and Z is that LDA A generates
an error in MACROTEA as the 'A' is seen as an illegal addressing mode
instead of as a label.

First, note that the labels X, Y and Z are placed in the symbol
table. Their values are whatever resulted from the last call of the
macro ADD. To check this, add: 101 ADD (1 2 3) and after assembly look
again at the symbol table. X, Y and Z are now 1,2 and 3 respectively.

The code for ADD didn't appear since .ES wasn't in effect. However,
the program counter value in the assembly report shows the end of
assembly at $9813, and T1ine 90 was assembled at $9806

If .ES is included, say at line 65, the assembled code is
now displayed:

....... same as before
9806-8C0201 0090 STY $102
0100 ADD ($100 $101 $102)
0010!!!1ADD .MD (X Y Z)
9809-18 0020 CLC
980A-ADO001 0030 LDA X
980D-6D0101 0040 ADC Y
9810-6D0201 0050 ADC Z
(The 1ine with .ME isn't printed.)
0110 .EN
....... same as later

For fun, try moving the .ES line 65 to line 45 - the listing
of the macro will now commence within the macro.

With .ES at line 65, try the assembly again with line 101
included. (That's 101 ADD (1 2 3)). You will see that the operands
will have changed to the new values for the macro's arguments.

Now for an attempt at nested macros. These will be very short so
you can see the results on the PET's screen. (Almost! Press SPACE to
"freeze" the screen and press any other key to resume the assembly
Tisting.)

When things get tangled, .ES can be very helpful to see what's
going on. For fun, try moving the .ES from line §5 to line 45. Now the
macro's expansion will appear within the macro. (MACROTEA does things
very literally.)

Copyright © 1980, Skyles Electric Works

AS LI

9800-A911

9802-A933

9804-A922
9806-A944

9808-A922

980A-A922

0010 .ES

0020!! IMULCH .MD
0030 LDA #$22
0040 .ME
0050!!!FARM .MD
0060 LDA #$33
0070 MULCH

0080 LDA #344
0090 MULCH

0100 .ME

0110 LDA #3$11
0120 FARM
0050!!!FARM .MD
0060 LDA #$33
0070 MULCH
0020!! IMULCH .MD
0030 LDA #$22

0080 LDA #%44
0090 MULCH
0020!!!MULCH .MD
0030 LDA #$22

0130 MULCH
0020!1!MULCH .MD

PAGE 143

10030 LDA #$22

0140 .EN

You will notice that MACROTEA has the nice habit of providing a

line for each line within a macro,

including comments, the .MD and

.ME pseudo ops and the lines with some code on them Examination of
the 1isting above reveals that:

Address

9800
9802
9804
9806
9808
980A

Came From

Main program line 110
Macro FARM 1line 60

Macro MULCH 1ine 30 nested in FARM 1line 70
Macro FARM line 80
Macro MULCH 1ine 30 nested in FARM line 90
Macro MULCH Tline 30

As a challenge in nested macros, write a brief program which will
fi11 all 65536 possible memory locations with a pattern of your choice.

Try to do this with a minumum of source text lines.
zero - so you will need .BA 0000.

you can do better than that.

Start at address

I did it in 43 1ines, and am sure

(Digression: A similar, and much tougher task is to write a 6502

program which will fill all of memory with zeroes.

That includes the

program itself, so it vanishes!) (Let me know if you succeed ... G. Y.)

Copyriaht

© 1980, Skvies Flactri-

PAGE 144

Each time a more powerful capability is added to a programming
tool, more powerful errors are possible. Debugging macro mistakes can
be a non-trivial task.....

Here is a mystery error:

10! ! IMACRO
20 LDA #8311
30 .ME

40 MACRO
50 .EN

AS L1
10C AT LINE 7EQE

10C is "Bad Character In Label" - with a rather strange line number.
The cure is to see that line 10 didn't include the .MD pseudo-op.

Take a look at the List of Macro Related Error Messages in the
Summaries part of this manual. Rather than to bore you with ten pages
of ways and means to get these error messages, you are encouraged to
write a few short programs to do these errors. The understanding gained
is probably worth the time spent.

Some of the errors will be superceded by more obvious errors. For
example, !20 will be masked by !02, which is the "I1legal Opcode" error.
If you attempt to name a macro with an op-code's name, such as LDA,
MACROTEA will either assemble the opcode or tell you that an error
appeared in the operand. ;

A much more insidious error is to call a macro with the arguments
in a different order. For example, suppose you have:

!11SUBT .MD (FIRST SECOND)
- LDA FIRST
SBC SECOND
.ME

Clearly, SUBT (2 1) will give a different result than SUBT (1 2).

If you get the !06 error (duplicated label), the culprit is usually
that you forgot to use the ...LABEL form for labels within your macros.
Remember that this form defines a label to be "local" to a macro, and
if you call the same macro twice, the ellipsis is required for any
"local" addresses or values. Also be sure that each macro you use has
different label names for internal labels or arguments.

Last, be sure that any multifile assemblies have their macros
defined at the start of each file. If possible, don't use different
macros of the same name in different files - or you will be condemned
to many fruitless hours.

PAGE 145

Monitor in Detail

THE MONITOR

The Monitor permits several

The Monitor is the third major part of MACROTEA. Once you have
other utilitarian operations at the machine code level.

assembled your program, the Monitor lets you directly examine & change

the memory and registers of the 6502.

MACROTEA MONITOR REFERENCE CARD

gy 1| (3udwuoaiAud daay)juelsuaem yIL0IYW 03 31X3 jnodiz Z|12
91 JISvE 03 3Lx3 X9 X|0e
191 Alquassesyip dajsajburs yitm apod 2069 3jndaxy yLem (4ppe) M|61
$S1 uoLjedo| Jayjoue 03 Lsowsw Ado) NEFRSTI-NE (g4ppe) (z4ppe) (14ppe) L|BT
9v1 JISYg wodj J0JLUOK J3FUl-3Y JajuasAs FSAS|LT
(T I0 @ 2ATIp YSTP JOJ :T 10 :g) (T+4ppe pua) (4ppe 34e35)°(#32LA3p)° ,IWYNITIL, S
$91 3|14 adey 40 YSip o0jul AJowdw IARS 9AeS |([+4ppe pud)‘(4ppe 14e3s)(#301A3p)°, IWYNITI4:d, S|91
8yl sJa93151baa zpg9 Jo0 sardod s,ua03puoy Aeydsig| suaa3sibaa dlsT
6G1 juiodyeadq 330S YILM 3pod Z0G9 3IN23x3| 3deapjainb (4ppe) b|bIT
¥ .tmuﬁbhﬂ fue Ajyrosds 10" Qmu;mg 0
991 J42jutad 03 3ndIno J03LUOK pUIS uado | ***# #o0rA8p S8ATH YO I89339T By " * olet
611 Xay u} Aaowdw 3jLam ao/pue Keydsyq Aaowaw (z4ppe) (14pPe) W|ZT
(I 10 g 8ATIp YSIP 107 :T 10 :§) Trradeyt e (#3o1A3p 2UOLIAO)* ,IWYNITIdw 1
91 AJdowsw ojup 3Ly adej Jo ysip peo] peoy | “*rysrpt (#22LA9p) " IWYNITI4 . T|TT
G91 834g sn3e3s 0/1 134 pue DYl 4ojLuoy 3asay dnuea |} Al01
- +--abuer [[OIDS""* (z4ppe) (14ppe) 1
OGT | I1JSV pue xay uj Kdowow 33}am Jo/pue Ke|dsig|ajeboaaajuy | -~ saurr gz* - (4ppe) 1| 6
TTTIIoSY jungc Tt (bes 113SY,) (24ppe) (14ppe) H
£GT [3ouanbas patjroads jo sassadppe juaeys Aedsig uny | *-cxsy juny- - - (bas a34q) (z+ppe) (14ppe) H| 8
861 8pod 2059 3InIax3 0306 (4ppe) 9| £
GG1 9349 paty1oads y3im abuea Laowawea)Lap LLLd (23£q) (z4ppe) (14pPE) 4| 9
+-+pbuPI [TOIOS*"* (z4ppe) (14PPR) Q
251 X383 824n0s 2049 pue xay up Asowsw Ae|dsig|a|quassestp | *--ssury gz - (4ppe) a| s
991 uaaJ2s 03 3INdIN0 403 LUOK pudS 850|2 al ¢
6G1 puewwod {) 404 Juiodyeauaq 340s 385| Jupodyeadq (3unod) (J4ppe) g| ¢
Of T [VY3ILOYIYW WOoJy A0}LUOl 33U JO/pue BZL|eLFiu] qeadq yg 0 Ay3yg| ¢
Qf T | (BuLyjfuans saseda)jaeisplod YIL0HIVH 01 u.—xu_ Jeajoge vl 1
39vd NOILOY JITNOWINW XVLINAS-ONYWWOD "ON

Copyright © 1980, Skyles Electric Works

PAGE 146
ENTRY AND EXIT COMMANDS

JL ...same as .G 9000 ... Exit Monitor to MACROTEA coldstart(erase all).
BREAK or BR Initialize and/or enter Monitor from MACROTEA.
SYS4 Warm re-entry to Monitor from BASIC (usually).
2& Exit to BASIC (return with SYS4).

i ...same as .G 9085 ... Exit Monitor to MACROTEA warmstart(keep work).

These commands initialize, start, and stop execution of the MACROTEA
Monitor program. It uses and works with the PET's built-in monitor.

NOTE: When testing machine language code, a common experience is to
lose control of the PET (i.e., a crash). When this happens two conditions
are possible:

1) The program is in a loop. If you used the Q command to start
execution, press the STOP key to get back. Otherwise there's no
hope, and you'll have to press the MACROTEA reset button.

2) The 6502 choked on an illegal op-code. I11egal op-codes will
often 'hang up' the 6502, and the only cure is to press the reset
button.

Once the reset button is pressed, SYS369397 to get into MACROTEA
(via the warmstart). If your code was in the $9800 user's RAM, it will
stil1l be there. Everything else will be lost (most Tikely).

A (allclear) This command causes exit from the Monitor to MACROTEA and it
entirely resets MACROTEA in the process. This means any text in the
workspace, assembly symbol tables, FORMAT, SET, HARD, printer device numbers,
etc., are cleared and set to the default values, so be careful!

BREAK or BR (break) Use this command to l1eave MACROTEA for the Monitor:
itk =]

BR
B* (shows monitor entry via BRK)
PC IRQ SR AC XR YR SP
.3 9085 E455 F1 FO 80 50 FF (your numbers may be different)
N (the cursor (K) flashes on this Tine)

When the BREAK command is issued the first time after power-on, the
MACROTEA Monitor initializes a tie to the built-in PET Machine Language
Monitor. The tie adds 14 additional commands to the Monitor's repertoire.

SYS4 (sysenter) This command allows you to re-enter the Monitor from BASIC
once it has been initialized via the BREAK command. Location 4 usually
contains a 00, and a SYS to any 00 in memory will cause a BRK instruction
execution of the Monitor (as long as the Break Vector points to the Monitor).

X (eXit) The X command exits the Monitor and puts you in PET's BASIC command
mode. Here you may execute BASIC programs or direct statements.

JL (zipout) Use this command to routinely leave the Monitor for a warmstart of
MACROTEA. The warmstart arrives in MACROTEA with everything exactly as
you left it. A1l settings, text, etc., are still there.

Copyright © 1980, Skyles Electric Works

PAGE 147

CODE MANIPULATION COMMANDS

R Display monitor's copies of 6502 registers.

M !addr 1! Saddr 22 Display contents of memory in hex bytes,

over range (addr 1) to (addr 2).

I !addrt Display memory in hex bytes and in ASCII
for 24 lines starting at (addr);

or I (addr 1) (addr 2) or, range (addr 1) to (addr 2).
D (addr Disassemble 24 lines of code,
: starting at (addr).
or D (addr 1) (addr 2) Disassemble continuously,

over range (addr 1) to (addr 2).

H (addr 1) (addr 2) (se Search for sequence of hex bytes in (seq)
over range (addr 1) to (addr 2).

T (addr 1) (addr 2) (addr 3 Copy bytes in range (addr 1) to (addr 2),
to destination range starting at (addr 3).

F (addr 1) (addr 2) (byte Write every memory location in range (addr 1)
to (addr 2) with the hex byte given in (byte).

The code manipulation commands permit the examination and modification
of the contents of memory.

To change the values in memory or the registers, all you have to
do is use the PET's Screen Editor. Just move the cursor about, make
the changes, and press RETURN for every line you want to have entered.

NOTE: A1l numeric values in the Monitor must be in hexadecimal and
be in either 2 digit or 4 digit form. If the Monitor does not understand
a command, it will either ignore the command or print the question mark.

NOTE: The Monitor's grasp of numbers is a bit weak - if you
by error enter some value like DEFG, the Monitor will translate
the number to a value it understands instead. The reason is that
some shortcuts were taken in the translation of characters to a
numeric value (specifically some masking).

© 1980, Skyles Electric Works

PAGE 14 8

JL (registers) The R command displays monitor copies of 6502 register
contents. This includes the Program Counter, Interrupt ReQuest vector,
Status Register, ACcumulator, X Register, Y Register, and Stack Pointer.

.R

PC IRQ SR AC XR YR SP
.3 AO013 E455 32 00 78 00 F6 (Your numbers may be different)
K

This is the same display that the Monitor gives on entry via SYS
from BASIC (except the B* indicating entry via 6502 BRK). The parts
of the display in detail are:

PC - The value of the 6502 program counter.

IRQ- " " " " " interrupt request vector.
SR - " " " " status register.

AC - "V " " accumulator or A register.
XR - " " oor " X register.

YR - " " """ Y pregister.

sp - * * " " " stack pointer.

If you wish to change these values, use the PET's screen editor
to do so. For example, suppose you entered:

(Cursor-Up)(3 Cursor-right) FFFF FFFF FF FE FD FC FB (R)eturn

The Monitor's Status Registers are now changed. To verify this
enter the R command:

R
PC IRQ SR AC XR YR SP
.; FFFF FFFF FF FE FD FC FB

If you know the purpose of the IRQ, you may be wondering why the
system didn't crash when the IRQ address was changed to $FFFF. This will
be discussed in more detail under the K (kleanup) command, but the short
answer is that the register values displayed are copies of the actual
registers made during the last previous appearance of B*,C*, or S*. If
you alter these copies (which I'11 call the Monitor's Status Registers)
the changes won't be written to the actual PET operating system until and
unless you give a G (goto) command. If you did a G right now, the PET
would indeed go away, since there is no valid IRQ code at location $FFFF.

NOTE: B*,C*, and S* indicate the mode of monitor entry; via BRK
instruction, via subroutine Call, or via STOP key, respectively.

Copyright © 1880, Skyles Electric Works

PAGE 1489

M (memory) The M command will display the memory contents in hexadecimal

— starting at the first address given and continuing in 8 byte lines
until the second address is reached or passed. The addresses must be
given in the form AAAA BBBB - that is, M will recognize 0123 but
will not recognize 123. The two addresses must be separated by one

space (or any other character - the separating character is utterly
ignored.) The STOP key will terminate an unfinished scroll.

.M 0330 0350
0330 FB FB FB F9 FB FB FB F9
0338 FB FB FB F9 FB FB FB F9
0340 91 81 81 81 81 81 81 81
0348 81 81 81 81 81 81 81 81
0350 01 81 81 81 81 81 81 81

M displays the memory in 8 byte blocks. The number on the
left is the starting address for the line.

Your display may differ in the values for the memory. By using
the screen editor, these values may be changed. As an exercise (and
to set up for the next example), change the display to:

0330 00 01 02 03 04 05 06 07
0338 08 09 OA 08 OC OD OE OF
0340 10 11 12 13 14 15 16 17
0348 18 19 1A 1B 1C 1D 1E 1F
0350 20 21 22 23 24 25 26 27

Repeat the M 0330 0350 to check that the change was correctly entered.
It is easy to muff and press the DEL key, or forget to press RETURN
after each changed line.

If the Screen Editor doesn't appeal to you, you can enter the
line you want to change in exactly the format used in the display.
Don't forget the spaces, they are important. If you are changing only
a few bytes, this may be simpler to do.

.M 0360 0360
: 0360 81 81 81 81 81 81 81 81 (your numbers may be different)

.. 0360 AA BB CC 2

.M 0360 0360

.: 0360 AA BB CC 81 81 81 81 81
N

Here the memory at 0360 to 0367 was displayed. Then the first
three bytes were changed by entering the line in the same format.
Note that the entire line wasn't required; although, the Monitor did
take notice of the missing portion by printing a question mark. A
reapplication of M verified that the change was correctly accepted.

Copyright © 1980, Skyles Electric Works

Copyrignit

PacE 150

Be a bit careful of typing errors. The monitor will cheerfully
accept lTetters beyond F in creating hexadecimal numbers. For example,
try:

.M DOOO DOOG

This will display from $D000 thru $D017. My classic error is to
try:

.M D000 DOFF

This gives me a display from $D898 to $DS8FF. Why, is because of
the ancient Tetter 0 versus number 0 human bug.

Spend some time trying different memory changes. Attempt to force
the Monitor to accept errors or unusual input - and learn how the
Monitor looks at its input.

To see how MACROTEA places code in memory, look at the examples
provided for the .0C and .0S pseudo-ops.

(interrogate) The I command does everything that the M command does,
and in addition it has an "ASCII map" - an interpretation of every
memory byte as though it were an ASCII character. This map appears
in reverse video at the right of the PET screen, next to the normal
hex byte display. There are eight ASCII characters displayed in
each line, corresponding to the eight hex bytes in the same line.

A dot is displayed if no printable character corresponds to the hex

byte.

The I command accepts the same address parameters that the D
command does, and with the same restrictions. A single address will
display 23 1ines. A double address will scroll over the memory range
specified. The RVS key will slow scrolling on most PETs. The
backarrow key slows scrolling on machines with a business keyboard.
The STOP key will stop the display on all models.

Here is an example of I command use:

.1 0330 0350

' 0330 00 01 02 03 04 05 06 07|........
.' 0338 08 09 OA OB OC OD OE OF........
.' 0340101112 13 14 1516 17........

0348 18 19 1A 1B 1C 1D 1E 1H.. vemaon s

' 0350 20 21 22 23 24 25 26 27 !"#$%8'

K
This is the same area of memory which you experimentally filled
in and examined with the M command. It looks very similiar, and is,
but there are some subtle differences. First, notice that the character
immediately following the prompt dot is an apostrophe instead of a
colon as with M. Next, note that there is only one space between the
apostrophe and the 1ine address where the M command has two. The ASCII

map to the right has nothing but dots in the first four rows and that
makes sense since ASCII $00 thru $1F characters are not printable.

© 1980, Skyles Electric Works

PAGE 151

In the last row the first printable character, $20, is a space,
followed by special characters in ascending ASCII order.

Just 1ike M, the I command has a memory writing capability. Move
the cursor back up to the fifth 1ine and over to the 20. Change the
20 to a 40, and press RETURN. The ASCII map is instantly rewritten to
replace the space with a Commercial At (@) sign. To be absolutely
certain that the change really occurred do:

.1 0350 0350

.' 0350 40 21 22 23 24 25 26 27! "#$%4]
M

Yep. That worked fine; the change was written to memory.

Just in case you continue to use the M command either through
force of habit or to avoid the glare of the ASCII map when you don't
need it, it's nice to know that a single line of M can be converted
to a line of I. Change the colon to an apostrophe and press RETURN:

.M 0350 0350
<;.: 0350 30 21 25 23 24 25 26 27 ;)

.' 0350 40 21 25 23 24 25 26 27R!%#%%8&'
N

Make sure that there is 6nly one space between the 1iné address
and the first byte when you do this; otherwise the 1ine will be
rewritten with garbage. If necessary, you can pull the whole row of
bytes over with the DEL key.

The ASCII map has a bug or a feature depending on your point of
view. In generating the map it ignores the most significant bit 7.
The feature is that you can read ASCII characters which have been
encoded for font control by toggling bit 7 (you'd see a graphic
otherwise on some PETs). The bug is that there are two hex bytes
which can generate every ASCII character in the map. Thus, $C9 and
$49 both interpret as an "I".

Copyright © 1980, Skyles Electric Works

PAGE 152

D (disassemble) The invocation of D will disassemble the machine language
code until a screen full is displayed. The disassembly starts at the
address specified after the D. To display more pages of disassembly,
just press the RETURN key. Press SHIFT-RETURN and then RETURN to get
back to the prompt dot of the Monitor's command mode.

By specifying two addresses after the D (AAAA BBBB) you can get
a continuous disassembly over the address range specified.

A disassembled 6502 program with instruction mnemonics and
addresses laid out can be quite convenient when you are attempting to
find an instruction you want to patch, or to look at machine language
programs which came without any listing.

Just for the fun of it (not to mention the example), let's go for
a romp in the PETs BASIC 4.0 ROM:

.D D000

., DOOO 85 5B STA $5B

., D002 86 5A STX $5A

., D004 BA TXA

., D005 FO 02 BEQ $DO009

. etc ..

., D026 85 62 STA $62

D028 A5 61 LDA $61

D DO2A 79 CE DO ADC $DOCE,Y

On the PET screen 24 lines of disassembled code will appear. The
cursor will be on the 'D' in the last 1ine. To continue the disassembly
just press RETURN. The screen will now display another 23 1ines of code.

(Press RETURN)

., DO2A 79 CE DO ADC $DOCE,Y

., DO2D 85 61 STA $61

: BtC s

Note that the top line is the same 1ine that was on the bottom
in the last frame of disassembly. To leave the disassembly, press
SHIFT-RETURN and then RETURN, or move the cursor down once and then
press RETURN.

If an illegal 6502 opcode is discerned, the disassembler w111
print ???. For example, try:

D BOOO
, BO0O C7 7?22

Copyright © 1980, Skyles Electric Works

PAGE 1573

One gentle warning about disassemblies - the location you choose
to disassemble from might not be where the first 6502 instruction
begins. To wit:

D D000
., D000 85 58 STA $58
., D002 86 5A STX $5A

D DOO1

., D001 5B 222

., D002 86 S5A STX $5A
., D004 8A TXA

., D005 FO 02 BEQ $D009

The catch is that sometimes there are no ??? marks, because some
sequences of data just coincidently happen to have valid "disassemblies".
Sometimes a strange-looking branch will clue you, but not always. In
general, always be suspicious of the disassembly at the top of the
screen. The bottom of the screen can trusted usually, since an incorrect
disassembly will usually synchronize after a few op codes, as it did
above.

(hunt) The H command will search the memory in the range given by two
addresses in form AAAA BBBB. The sequence of bytes to be searched for
is placed after the second address as hexadecimal numbers, CC DD EE ...
and so on up to 32 bytes. Alternatively, the search sequence may be in
ASCII characters preceded by an apostrophe ('FIND ME). Up to 32
ASCII characters may be searched for.

With the memory set up as in the previous example for the M
command, here is a search for $0A:

.H 0330 0350 0A
033A
M

Location 033A held the value OA, which is easily verified with the
M command. If more than one byte is being searched for (usually an
instruction you want to find), just provide the sequence:

.H 0330 0350 0A OC

M
Here there is no OA OC sequence. However, OA OB or OA OB OC will work

fine. When a matching sequence is found, only the address of the first
byte in that sequence is printed.

© 1980, Skyles Electric Works

PacE 154

If we go Tooking through the PET ROM (BASIC 4.0 version), it's
easy to illustrate how rare sequences of two or more bytes are. First
we'll Took for all the addresses of a single kind of byte:

.H D000 EOOO A9
DOOB D014 D062 D089 D091 D097 DO9C DOB3 (and on, and on,
and on, for a total of 105 entries.)

So there are lots of single bytes of a given kind. Now we look
for a two-byte sequence:

.H D000 EOOO0 A9 00
D091 DOB3 DOBD DOC2 DICE D26C D29B D2D5 (and so on for a
mere 17 entries, total.)

For this particular sequence there are about 80% fewer instances.
Now look for a three-byte sequence:

.H DOOO EOOO A9 00 38
D091

Hmmm - only one instance found. But let's try another 3-byter:
.H D000 E000 A9 00 01

N

None were found this time. The point is that your chances of
getting a random response to a 3-byte hunt are small, while there's
not much chance that a single byte hunt will be worth the keystrokes.

T (transfer) The T command is used to move blocks of code from one point
to another. The first two addresses specify the start and finish for
the block of code. The third address tells where the first byte of the
code block is to be placed. Any code at the destination will be
overwritten by the new code.

With the code from 0330 to 0350 set up as in the preceding examples,
(That is, 0330 is 00, 0331 is 01 etc to 0357 as 27) here is a
brief transfer:

.T 0338 033F 0330

This tells the Monitor to move the code starting at 0338 and
ending at 033F to a new location starting at 0330. Use M to see if
this is so: :

.M 0330 0340
0330 08 09 OA 0B OC OD OE OF
0338 08 09 OA 0B OC OD OE OF
0340 10 11 12 13 14 15 16 17

Indeed, the code at 0330-0337 has been replaced with the code at
0308-033F.

Copyright © 1880, Skyles Electric Works

F

pace 155

T will permit overlaps between the old code and the new code's
locations:

.T 033A 0342 0340
.M 0330 0348

0330 08 09 OA 0B OC OD OE OF
0338 08 09 OA 0B OC OD OE OF
0340 0OA 0B OC OD OE OF 10 11

— e —— —— — — — —

The range 033A-0342 overlaps with the destination 0340-0348. The
underline is included to show the moved code more clearly. The other
direction of transfer works as well:

.T 034A 034F 0348
.M 0348 0348

0348 1A 1B 1C 1D 1E 1F 1E IF

— — — — — —

The reason for showing the variations on T is to reassure you
that T is safe to use under all circumstances. An incorrectly written
block transfer routine will typically write into an area it hasn't read
yet, and if the moved code overlaps the destination area, this will
rapidly create trash.

(fi11) The F command is very simple. It takes parameters in the form

W= AAAA BBBB CC, where AAAA is first addresses to fill, BBBB is the last

Copyrignt

address to fill, and CC is the hexadecimal byte to fill it with:

.F 0330 0337 EA
.I 0330 0330

.' 0330 EA EA EA EA EA EA EA
.F 0330 0337 FF

.1 0330 0330

In the example, I just filled the same area of memory twice to
show that it works as advertised. What to use F for is a tougher
problem. I can think of two uses.

First, use F as an eraser when you have to type in tables of bytes.
This is never an easy job, but it will be easier if you are typing on
a smooth field of 1's. When I type over garbage, I'm always losing my
place when I scroll over what I've done.

© 1980, Skyles Electric Works

PAGE 156

Second, an extension of the first idea. Use F to format the
boundaries of tables which you are about to type:

0330 0342 11
0343 0349 22
034A 0354 33
0355 0357 44
0330 0350

— T T M

0330 11 11 11 11 11 11 11 1%
0338 .11 11 XL 11 11 X1 31 1M, oncninos
0340 11 11 11 22 22 22 22 24,.. """
0348 22 22 33 33 33 33 33 33""333333
0350 33 33 33 33 33 44 44 4433333DDD

If you have four different byte tables to type, it is now very
obvious where they should start and stop. If you type the last byte
from your worksheet for Table 2, but have one remaining 22 on the
screen, then it's time for an investigation. You may have skipped
a byte on the worksheet, which is easy to do.

Copyright © 1980, Skyies Electric Works

Copyright

CODE EXECUTION COMMANDS

G (addr)

Q (addr)

B (addr) (count)

W (addr)

PAGE 157

Jump to location (addr) and execute code.
Return to Monitor on BRK ($00) instruction.

Execute code at (addr) but return to Monitor:
1 - via a Breakpoint.
2 - by pressing STOP key.

Set soft Breakpoint pointer to (addr) and
return to Monitor when (addr) has been
approached (count) times in a Toop.

Execute code at (addr) in single-steps with
disassembly at each step. Return to Monitor
by pressing STOP key.

These commands provide the ability to execute code.

The commands G, Q, and W will use the value in the Program Counter

if no address is provided.

Sometimes this is good, sometimes you must

be cautious! (In doing the examples. I lost the PET several times by

not being observant.)

© 1980, Skyles Electric Works

pacE 158

S (goto) The G command causes a jump to the specified address. The PET
will then execute the program code at that location until a BRK ($00)
instruction is encountered. The BRK will cause a return to the Monitor
registers display.

Here is a short program that prints "@" on the screen starting at
the fifth Tine. You will recognize it as a simpler version of the
program used to illustrate the .DI pseudo-op.

AS LI

0010 .BA $300
0020 .0S
0300-A900 0030 LDA #00
0302-AA 0040 TAX
0303-9DA080 0050NEXT STA $8000+200, X
0306-E8 0060 INX
0307-DOFA 0070 BNE NEXT
0309-00 0080 BRK
0090 .EN

This listing assembles to a start address of $0300 and an end
address of $0309.

The M command will show you the program as it is assembled:

.M 0300 0308
: 0300 A9 00 AA 9D C8 80 E8 DO
0308 FA 00 20 20 20 20 20 20

Now exit to BASIC:

X
READY.

Once assembled, you can execute this program from BASIC with
SYS768 . When you do, 6 and one-half lines of "@" should appear on
the screen - and guess what? You are now in the Monitor due to the
BRK instruction at the end. To see the program again, and for the
point of this example, clear the screen (for greater drama) and do:

.G 0300

So the G is just 1ike a SYS but from within the Monitor.

Copyright © 1980, Skyles Electric Works

-

Copyright

PAGE 159

(quicktrace) The Q command will execute code starting at the given
address and keep track of whether the breakpoint has been approached,
how many times the breakpoint was approached, and whether the STOP

key has been pressed. When the (count) number of approaches to the
breakpoint have elapsed, Q will halt and leave you in the W mode (walk
or single-step) with a display of registers and disassembly. You may
press the STOP key to leave Q or W.

The advantages of Q are 1) you can press STOP and get back from
a loop, and 2) you don't have to always modify memory to set hard
BRK's, run a bit of code, restore the original code, and so on. The
price of Q is that it runs more slowly. Time-critical code must be
debugged via G and the BRK instruction.

(breakpoint) The B command is a subfunction of the Q command. B sets
a soft breakpoint pointer to a specified address which will be skipped
for the number of times determined by the (count) value. For example:

.B 1000 0010

...will set a breakpoint in an imagined space just before $1000,
which will be ignored for 16 times before becoming active. (Remember

that 0010 is 16 in decimal.) On the 17th approach to $1000, the
breakpoint triggers and exit occurs prior to passing $1000.

B does not alter memory. It just sets a pointer which Q examines.
Warning: B works only with Q. If you attempt a G, be sure the memory
contains a $00 (a hard break, BRK) to permit a return to the Monitor.

Now let's see how Q and B can be used. First, let's set a breakpoint
prior to the INX at $0306 (in the G command example program):

.B 0306 0000

Now to execute the code, clear the screen and enter:

.Q 0300
22 00 00 00 F6 0306 E8 INX
e

The first "@" was printed on the screen and then the breakpoint
at $0306 was triggered. Next, the 6502 registers and the current
instruction (not yet executed) are displayed. You are now in the W
mode. The registers are not displayed in the same order as with the
R command. The actual order of appearance is:

22 00 00 00 F6 0306 E8 INX

[d & &g ! / /
SR AC XR YR SP PC CODE DISASSEMBLY

© 1980, Skyles Electric Works

PAGE 160

Leave the W mode by pressing the STOP key, and now home the cursor.
Press two cursor-rights and press spaces until you are left with
the line:

Q

...and press RETURN. Now the registers display will show:
20 00 01 00 F6 0306 EB8 INX

...and there will be two "@" on the screen.

If you look at the X register, it contains the value 01. Now since
we have arrived at the INX twice, so this shows us that:

A BREAK VIA Q & B STOPS JUST BEFORE THE DISPLAYED INSTRUCTION.

The Monitor's B isn't very fancy - you will have only one
breakpoint to use in this manner.

Also note that the Q command without an address used $0306,
which was the value of the Program Counter. To complete the program,
press STOP, clear the screen, and enter:

.G
...and press RETURN. If all goes well, you will see the following:

B*
PC IRQ SR AC XR YR SP
.5 030A E455 32 00 00 00 F6

X

PRERRPPRPREPRERELARRACERER. and a 1ot of these!

G will also use the current value of the Program Counter if you
don't supply an address. (Use G with caution... if you were to use
it again right now without an address, you would lose your PET.)

0K, now clear the screen and enter:

.B 0306 0050
.Q 0300
20 00 50 00 F6 0306 EB INX

dacdddededdeadddddaedddaudedddacedacddd LTE T

dededadeddddeddaddddedddeddedadedecdelddcdeld - ¢z onleg

@ \ I'\.,:‘I!—;:__“.

The value 0050 is 80 in decimal, so we can expect to see 80 '@ -:
appear on the screen. Since the program prints the "@" before the INX,
we see 81 "@" on the screen. Press STOP, home the cursor, and type .Q
(no address). Press RETURN and another 81 "@" will appear.

Copyright © 1980, Skyles Electric Works

PAGE 161

For a 1ittle fun, continue to STOP, HOME cursor, and RETURN,
until you see the Monitor's B* (hard break) display... there's something
a little funny here - the registers seem to print out very slowly.
Clear the screen (gee - the screen clears from bottom up, and in
sections!) and enter:

.M 0300 0310
AT oo

Hmmmmm - that sure takes a long time!

The solution to this puzzle lies in that we are still in Q mode.
After leaving the program, Q is still checking for the STOP key and
the breakpoint, even though we are now executing the Monitor's code.
Press STOP to get back to normal. (Don't try Q on top of Q - it
makes the PET go away.)

When you press STOP to leave Q, the Monitor will display a
S* before the registers instead of the usual B*. This tells you
that the Monitor was called by the STOP key instead of the BRK
instruction.

W (walk) W is the single-step command. The code will be executed starting

Copyright

at the specified address. Each instruction will generate a display of
the registers, the program counter, and a disassembly of the instruction
being executed. Pressing the < key will singlestep execute the next
instruction. If RVS is held down, W will continue to step at about 2
steps per second. If SPACE is held down, W will step at about 12 steps
per second. (SPACE will override RVS is both are pressed.) Press STOP

to exit Walk mode.

If you have a PET with a business keyboard (the keyshifts are
those of a standard typewriter) three differing keys are used for the
three W step functions just mentioned:

For business keyboard singlestep use the key - (not the numeral pad)

n n n STON step n li - "

" n n fast Step n n n - (not the numeral pad)

The firmware in the ROM provided with the business keyboard has
an additional feature not availiable on other PETs. Anytime output is
being scrolled on the screen, it can be temporarily halted with the
colon (:) key. To restart the scroll, use the backarrow (=) key. This
applies not just to the W command but all output, whether or not the
MikroMan program is up.

© 1980, Skyles Electric Works

PAGE 162

W will provide a more detailed look at our little program which
prints all the "@"s. To see how the program works, enter:

.W 0300
22 00 Al 00 F6 0302 AA TAX

Some examination of this is instructive. First, the instruction
LDA #00 was executed, since the AC register holds $00. Second, the
XR register has the value Al in it (or some other value depending on
what you did last) which indicates that the TAX has not executed yet.
To see the next instruction, press the RETURN key once:

22 00 00 00 F6 0303 9D C8 80 STA 80C8,X

The TAX is now executed, but the @ hasn't appeared, for the STA is
the next instruction to be done. Press the RVS key and leave it
down for a few seconds. Each instruction will be executed, and

will be shown at about 2 instructions per second.-A careful look at
the screen will reveal the "@" character here and there. (Remember
that the scrolling of the screen will move the "@" upwards as the
walk is performed.)

To go faster, hold the SPACE key down. With a sharp eye, you can
see the '@' appearing furtively amidst the register displays in the
Walk.

To leave Walk, press the STOP Key. If you now enter W without
an address, you will continue from where you left off.

Copyright © 1980, Skyles Electric Works

Copyright

PAGE 163
FILE OPERATION COMMANDS

S "P:FILENAME",(device#),(start addr),(end addr+l) Save memory into disk file;
or S "FILENAME", (device#),(start addr),(end addr+l) Save memory into tape file.

L "@:FILENAME",(device#) Load disk file into memory;

T s Dy T T Sy A i] E_'_ or 1_: for' drive m or 1
or L "FILENAME", (optional device#) Load tape file into memory.

JL Reset Monitor's IRQ Status

Register to normal and
System's I/0 Status Byte

to zero.
0 ...the letter oh... Send Monitor output to
] . .
printer device #4;
or 0 (device#) ...also the letter oh... or to specified device #.
C Restore Monitor output to
=3

screen device #3.

NOTE: The K command is needed only for komputers with BASIC 2.0(Ver3)

because the S command mangles the IRQ sometimes and the L command can)
mess up multiple disk loads. The K command exists in the BASIC 4.0 version
of MACROTEA, but has 1ittle utility.

© 1980, Skyles Electric Works

Copyright

PAGE 1 6 4

(save) Once you have a working program in machine language, it is wise
to immediately store it on diskette or tape. The S command does this
in a format called "program file" (there are other kinds of files).
When using S, the syntax must be followed with some care:

S "O:FILENAME",08,0300,0400

This will save the area of memory 0300 thru O3FF to a file on
disk drive 0. The S is followed by a space. Next, a double quote mark.
Then the drive number 0 or 1 followed by a colon. Then enter the
filename followed by another double quote mark and a comma. Next the
device number, usually 08 for the disk drive, followed by a comma. Then
the starting address in hex of the memory area to be saved followed by a
comma. And finally, the end address+l in hex of the memory area to be

saved.

The addresses must be in the usual 4-hexadecimal-digit form. Note
carefully that the end address which S uses must be one more than the
address of the last byte in your program.

If you wish to save a file on cassette tape, follow the same format
as above with two changes:

S "FILENAME",01,0300,0400

The changes are to eliminate the drive number and colon, anq'hake
the device number 01 or 02 for tape drive #1 or #2 respectively. .

If you wish to omit the filename for tape, type "" that is, make
the filename no characters between the quotes. For disk drive you must
specify a unique filename with at least one letter. '

If you press the STOP key during a tape operation you wi]T break
into PET's BASIC mode. Type SYS4 to get back to the monitor.

After the tape operation is complete, you may use .X to exit to
BASIC and do a VERIFY to make sure that the file is OK.

(Toad) To load a file which has been saved on disk:

L "O:FILENAME",08

The format is the same as that for S except for no start-end
addresses, and the same rules apply otherwise.

L "FILENAME",01 i i

And Tikewise for tape. a8 ber

© 1980, Skyles Electric Works

PAGE 1 6 5

K (kleanup) The K command resets the monitor's IRQ Status Register

"= to its normal address, and resets the I/0 Status Byte (ST) to zero.

Copyright

.K
N

K is needed to correct a pair of bugs left behind after use of
the S (save) and L (load) commands which are part of the built-in
BASIC 2(Ver3) monitor. The BASIC 4.0 monitor is ok and does not require
use of this command, although it is present and functional.

S BUG: At the conclusion of a disk or tape save file operation done
from the monitor, the first two letters of the chosen file name
are incorrectly written into locations reserved for the monitor's
IRQ Status Register (held in the BASIC Input Buffer). If an R
command is done, the monitor's IRQ Status Register will be
displayed containing a false IRQ address. It doesn't matter
unless a G command is to be executed; other commands work ok.

If a G command is now executed, the false IRQ address will be
written into the operating system's IRQ RAM Vector at locations

'$90-91 (BASIC 2). The system will crash within 1/60th of a
second when the next hardware interrupt tries to execute
nonexistent code at the phoney IRQ address.

~Use K after an S file save is finished. The K command will
rewrite the monitor's IRQ Status Register to the correct address
of $E62E (BASIC 2). (If MACROTEA isn't up, you can fix the false
address manually by typing the correct address over the registers
display and pressing return.) Another application of R will
now display a correct IRQ address.

L BUG: At the conclusion of a disk load file operation (not tape)
done from the monitor, the operating system's I/0 Status Byte
at $96 (BASIC 2)(same as BASIC's Status Word/reserved variable ST)
may incorrectly retain an End-Of-Information flag set in bit 6.
In such case, an attempt to load the next file will cease after
one byte has been 1oaded, since a set E-0-I flag says the task
is complete. '

Use K between multiple L disk loads. The K command will rewrite
the operating system's I/0 Status Byte to the correct value of
zero. (If MACROTEA isn't up, you can fix the false status
manually by doing .M 0096 0096 ,typing 00 over the first displayed
byte, and pressing return.)

The only use for the K command in BASIC 4 is to save yourself a few
keystrokes in restoring a normal IRQ address ($E455) after using an

_experimental value. Since K only restores $E455 in the monitor, this

value is then written to the system by doing a .G 0004 ,so the G
rewrites the IRQ RAM Vector, and the 00 in location 4 BRK's back to

the monitor.

© 1980, Skyles Electric Works

PAGE 1 6 6

0 (open) The 0O (letter oh) command will send the Monitor's output to some
device other than the screen, specifically to a printer. There have

been numerous occasions when I wanted to get a printout of a disassembly
for a machine language program. 0 will do this, assuming printer device 4:

.0 (...the letter oh...)
.D P300 P30¢A (what you type appears on the screen)
(but the output appears on the printer)

This example should give a printed 1isting of the program typed
in for the G command. If you should just happen to have a printer
with a different device number, 0 will accept an optional device number:

.0 @5 (...the letter oh, space, zero, five...)

.1 P3P0 P3pA (what you type appears on the screen)

(output goes to device P5)

This should give a hex byte dump and an ASCII map on printer
device p5if all went well. However, your printer may choose not to
cooperate with the output of the I command. The hex bytes will
probably appear ok, but since the ASCII map is reverse video, your

printer may or may not garbage those characters. If the output from
I is unsatisfactory, use the M command instead.

C (close) The C command reverses what the 0 command did. It restores
output from the monitor to screen device 3 again:

:C

.M 0300 0300
: @300 AS @@ AA 9D C8 8¢ E8 D@

And it's back to business as usual. Of course, if you wanted to,
you could achieve the same result by typing .0 §3 (letter oh, space, zero,
three), but why bother since that's four keystrokes instead of one?

Copyright © 1980, Skyles Electric Works

PAGE 1 6 7

MEMORY USAGE

When MACROTEA is in operation it requires the first 128 bytes of zero
page, and also the top 1K of your computer's memory. Never load object
code into that 1K region. If you need to load object code into that
area, use the .BA and .MC assemble commands to place the object code

in some other area. Then, with MACROTEA off, relocate that code to

to where you want it. Of course, this will require that you have a
separate relocating program.

BLANK

Skyles
Electric
Works

MACROTEA

INSTALLATION

Congratulations on your purchase of a Skyles Electric Works MacroTeA.
You have bought the latest, best and most cost effective 6502 micro-
processor software development system available. There are several models
of the Commodore PET computer. Additionally there are several competitive
brands of memory expansion connected to the side port on the original PETs.
Please confirm in which of the following models you will be installing
MacroTeA: 2001-4, 2001-8, 2001-16N/B, 2001-32N/B. Memory expansion:
Skyles Electric Works, ExpandaPET, ExpandaMem, or RC Factor-PME 1-Eventide
Clockworks. The following installation instructions are written for all
the above models of PET and memory expansion. Where there is a difference
in installations, they are clearly noted.

First, let us prepare the PET (all models):

Place your PET on a well-lighted work surface. Make sure you have
turned off the power and unplugged your PET from the wall socket.

Unscrew the four screws on the bottom of the top half of the PET
(about 5" back from the front of the PET on each side). Use the
correct size phillips-head screwdriver to avoid damaging the screws.

SLOWLY open the PET's case by 1ifting the front. Inside will be
several cables, some of which might be too short to allow full opening
of the PET. Find these cables and gently disconnect them from the PET's
main circuit board. When the case is fully open, set the bar (on the
left side) so that the case will remain opened.

Second, installation in the PET (by specific models):

A: For PET models 2001-4 and 2001-8 without internal memory:

1. Remove existing TK8OP or TK160P BASIC Programmers Toolkit
from the right side port of your PET. Carefully remove the Toolkit
"chip" (the biggest device) and install it in the empty socket on
your MacroTeA board. Note that the "notch" end of the Toolkit chip
is down as shown in figure 1.

10301 Stonydale Drive, Cupertino, California 95014 {408)735-7891

A-2

ik o

TOOLKIT

i

S
=
1

20 NoTeH

FleWRE- 1

2. Remove single screw from center right side of main PET
electronics board. Place Skyles MacroTeA board on top of PET board -
so that PET bus adapter cable is over at the right outside of the PET
chassis. Locate screw mounting hole or holes (see A on photo) over
center right side hold of main PET electronics board.

3. Place plastic spacer underneath the screw mounting hole or . holes
and insert the one inch self-tapping screw through the mounting hole and
spacer and into center hole of the PET main board. Tighten screw
securing the Skyles board to the PET board. -

4. Plug PC board edge connector into memory expansion connector
on right side of PET. The flat cable connector should be on the top
inside of the PET bus adapter board when the PC board edge connector
is plugged in.

5. Unplug power harness connector (brown, red and black wires)
from five-pin header on left front side of PET main logic board. Plug
this harness into five-pin header (C) on MacroTeA. Make sure that the
five-pin power harness connector is not shifted to one side of the
five-pin header.

6. Plug the power cable connector (D) from the MacroTeA board
into the five-pin header on left front side of PET main logic board.
Check that the five-pin connector is not shifted to one side of the’
header. Al1 five header pins must go into cable connector and not be
visible on either side of the connector. :

7. Make sure that all internal wiring harnesses clear the heat
sinks (E) at the back of the Skyles board.)

8. Hold top cover of the PET, place brace bar back into holder.
Close PET. Replace screws on each side of cover. Plug PET back into
wall power socket. Ko

r RERE =

10301 Stonydale Drive, Cupertino, California 95014 {408]735-7891

=

A-3

B: For PET models 2001-4, 2001-8 with Skyles Electric Works memory
expansion 8KB, 16KB or 24KB:

1. Remove the TK80S or TK160S BASIC Programmers Toolkit from
the Skyles memory expansion board and ribbon cable receptacle.
Carefully remove the Toolkit chip and install it in the empty socket
on your MacroTeA board. Note that the "notched" end is down as shown
in figure 1.

2. Carefully plug MacroTeA in the 50 pin ribbon cable socket
(receptacle) connector.

3. For 8KB, 16KB and 24KB Skyles memory expansions, unplug the
PET power harness (white connector brown, red and black wires) from
the 8KB, 16KB or 24KB memory expansion board. Plug this harness into
the five-pin header on the Skyles MacroTeA board. Make sure that the
five-pin PET power harness connector has not shifted to one side of
the five-pin header.

4. Plug the f1ve—p1n power harness connector from MacroTeA into
‘the now empty five-pin header on the Skyles 8KB, 16KB or 24KB memory

© “‘expansion board. Check that the five-pin connector is not shifted to
" one side of the header. All five header pins must go into the cable

connector and not be visible on either side of the connector.

5. Carefully "snap“ the MacroTeA plastic standoffs onto the
Skyltes memory expansion board. Note MacroTeA fits on top of the 8KB
memory board, on the top "back" of the 16KB memory board and the
top front of the 24KB memory expansion board assembly.

6. Make sure that all wiring harnesses clear the heat sinks at the
back of the Skyles Memory and MacroTeA boards.

7. Hold top cover of the PET, place brace bar back into holder.
Close PET. Replace screws on each side of cover. Plug PET back into
wall power socket.

C: For PET models 2001-8N, 2001-16N/B, 2001-32N/B:

-~ -1, Carefully remove the existing TK160N BASIC Programmers Toolkit
from the socket on the PET main logic becard. Install the TK160N "chip"
into the empty socket on the MacroTeA board. Note that the "notch" end
of the Toolkit chip is down as shown in figure 1.

2. On the right side of the PET main electronics board located in
the back near J9 is a jumper plug (see figure 2 for Tocation). With a
“pair of clippers or a sharp pointed blade break Tink "P". With the
small piece of bare wire (furnished) and a soldering iron reconnect
Tink "N" just in front of P.

10301 Stonydale Drive, Cupertino, California 95014 {408)735-7891

A-4

_ 3. Holding the MacroTeA board in your left hand over the rear of
-.-the PET main electronics board with the ribbon cable on the right and the
two power cables on the left, connect P9 to J9 and P4 to J4 with- the labels
(P4,P9) facing toward the right outside of the PET. P4 and P9 go onto the
inside row of pins. The outside row of pins remains open.

BLACK —
I——REP e
—— :am’?;gﬂk BACNK /CI?\F PET 2
RED -
- PA—J9||3
o
EAK ’
PET MAIN ELecTRoNIes PRETS §

BOARD
1%
-.o
-4
LT
REGLONNccTLWKN g?
P+~3’4 3
o
. Vi
[\) :

0..-

Sl ’?T_‘ggm FRONT OF PET P

FiIcuRe 2

4. Holding the MacroTeA board in your right hand over the rear of
the PET main electronics board, connect P11 to J11 (the red and black
harness) and P10 to J10 (the red, green and black harness). Check that
P10 and P11 have not slipped to one side of the headers J10 or J11.

5. Carefully place the MacroTeA board onto the right rear of the PET
main logic board.

6. Remove single screw from center right side of main PET electronics
board. Place Skyles MacroTeA board on top of PET board. Locate screw mount-
ing hole over center right side hole of main PET electronics board.

7. Place plastic spacer underneath the screw mounting hole and insert
the one inch self-tapping screw through the mounting hole and spacer and
into center hole of the PET main board. Tighten screw secur1ng the Skyles
board to the PET board.

8. Make sure that all internal wiring harnesses c1ear the heat
sinks at the back of the Skyles board.

8. Hold top cover of the PET, place brace bar back‘intOjfbe_holder.
Close PET. Replace screws on each side of cover. Plug PET back into wall
power socket.

REV. 2/18/80
10301 Stonydale Drive, Cupertino, California 95014 {408)735-7891

A-5

D. For PET Models 2001-4, 2001-8 with ExpandaPet or ExpandaMem memory
expansion 8K, 16K or 24K: :

1. Remove the TK80E or TK160E BASIC Programmers Toolkit from the
ExpandaPet, ExpandaMem memory expansion board. Carefully remove the
Toolkit chip and install it in the empty socket on your MacroTeA board.
Note that the "notched" end is down as shown in figure 1.

2. Carefully remove the ExpandaPet ribbon cable (50 conductor)
from the ExpandaPet and from the PET side expansion port.

3. Carefully remove the ExpandaPet/Mem from the PET.

4. Carefully remove the 2 to 4 extra 1inks from the ExpandaPet,
ExpandaMem header as shown in figure 3. For more information about
this header, please refer to the ExpandaPet manual.

5. Holding the MacroTeA in one hand in approximately its final
Tocation (see figure 4), connect the 50 conductor MacroTeA ribbon
cable connector to the ExpandaPet/Mem.

6. Check that the MacroTeA ribbon cable is identically connected

.-to_the ExpandaMem/Pet as it is to the MacroTeA.

7. Place the MacroTeA on top of the ExpandaPet/Mem as shown in
figure 4. Remove the green backing paper from the plastic standoffs
and press firmly to attach MacroTeA to the ExpandaPet/Mem.

8. Replace the Expanda - MacroTeA into the PET.
9. Remove the 5 pin power connector from the PET main electronics

board.. Connect this connector assembly to the 5 pin power header on
the MacroTeA board. Be sure that the 5 pin connector has not been

~allowed to slip to one side of the MacroTeA power header.

10. Connect the 3 pin ExpandaMem/Pet power connector back into the
ExpandaMem/Pet 3 pin header. Be sure that this connector has not '
slipped to one side of the header.

MagroTex .
11. Now plug theAS pin power cable connector to the 5 pin header on

 the PET main electronics board. Be sure that this connector has not

slipped to one side of the header.

- 12. Plug the MacroTeA - Expanda ribbon cable assembly into the side

il port of the PET.

'13. Review the above steps, checking for error.

. .. 14, Make sure that all wiring harnesses clear the heat sinks at the
back of the ExpandaPet/Mem and MacroTeA boards.

15. Hold top cover of the PET, place brace bar back into holder.

" "'Close PET. Replace screws on each side of cover. Plug PET back into

‘wall power socket.

10301 Stonydale Drive, Cupertino, California 95014 {408]735-7891

o o | WATTE FROTECT
I/0 SEL D- £ -----------J---S-E-I:-B-----------

EPROMSEL | o KEMWE | sEL A

MEMSEL 7 OWO SEL 9

MEMSEL 6 o o | SEL7

MEMSELS | o—— o | SEL®

MEMSELA | o— o | SELS

MEMSEL 3 o/o SEL 4

MEMSEL 2 - o/o SEL3

MEMSEL1 | o o | sEL2

/
MEMSEL O o _ 0\ SEL1
\PIN‘I
Figure 3.1
o o o o o o o o o o o o o
oREMius \ p o REMIE, REWKE, REMIVE, o o o o
o%ﬂﬁ} oLEMME, Rewis, REMUE Zo o o o P8
7o£ﬂm/w'}oé? o REMUE, o o >o o 7 SO (P)
6° o7 o g g 0 o/o o \o 0——o0 © o
‘0 ob o o o o o o o 0o O0—4—0 © o
fo/oélo 0 o/o o/o o/o o—+—o0 ©)
'50/0«1 o o o) o/o o/o 0. 0. ©)
:10/0_‘3‘ o 0 o/o o/o o/o o/o 0 0
fo/o.io o o/o o/o o/o o/o o/o
90/01 o 0 0/01 °/°1 o/c:t1 o/o o/o
3.2 3.3 3.4 3.5 3.6 < X 3.

Nt W

FIGURE NUMBERS

3.1 STANDARD 16K OR 24K IN 8K PET.
3.2 STANDARD 32K IN 8K PET.
3.3 STANDARD 16K, 24K OR 32K IN 4K PET.

3.4 16K EXPANDAMEM 12K CONTINUOUS TO 8K PET,

4K WITH WRITE PROTECT IN BLOCK 7.

' 3.6

| 3.6

24K EXPANDAMEM 20K CONTINUOUS TO 8K PET,
4K WITH WRITE PROTECT IN BLOCK 7.

32K EXPANDAMEM 8K WITH WRITE PROTECT IN BLOCKS 6 & 7.

3.7 DISK SYSTEM ALL MEMORY SIZES: SINGLE DENSITY AO7 AV3éeqBLE WITH pMACAs,
3.8 DISK SYSTEM ALL MEMORY SIZES: DOUBLE DENSITY

L

”

10301 Stonydale Drive, Cupertino, California 95014 {408}735-7891

4

[ﬂ T Rt BAcK OF PE?”‘\ A-7

88
3 i
\: l\

CABLE

5D CoNDUCTOR

RIBBRO

\

EX PANVDAFP ET
ASSENMBLY

FRONT 207 P T+
FretaReE 4

Remove the green backing paper from the warm start (reset) butten
and firmly press the reset button onto a convenient location on the
right outside base of the PET.

You have now completed installation of MacroTeA.

Please see page 5 for MacroTeA starting instructions or page 22
for Toolkit starting instructions.

10301 Stonydale Drive, Cupertino, California 95014 {408)735-7891

B. For PET/CBM 4016, 4032, with 12" screens (Fat Forties), 8032, SP9000, 8096.

1) Remove the ROM/EPROM/ROM assembly (Socket-2-ME, Go-4-IT, etc.) from UD12
on the main logic board and install in UD4 of the MacroTeA board. Note the
notch direction. .

2) Remove the ROM/EPROM/ROM assembly from UD1l on the main logic board and
install in UD3 on the MacroTeA board - be careful of the notch direction.

3) Remove the .ROM 901499-01 or 901474-03/901474-04 from UD7 and install in
UD5 on the MacroTeA board. :

4) Place the MacroTeA board in the right rear quarter of the main logic
board. The MacroTeA ROM/EPROM notches should be to the right and the power
regulator heat sink to the rear.

5) Plug the red/white, 2 wire cable assembly into pins 21, 22, 23, 24 of
the inner row of J9 on the main logic board. See detail - Figure 1.

6) Plug the 16 wire gray ribbon cable assembly onto the rear 8 pins of both
rows of J4. See detail - Figure 1. Note the red edge stripe should be to
the rear. You will cover but not plug into pins 16 and 25.

7) Plug the 24 pin cable socket assembly into UD7 on the main logic board.
Pin 1 should be to the left front of the socket.

8) Plug the 5 wire 7 pin power cable into J11 at the left rear of the main
logic board. A black wire should be to the rear and a red wire to the
front. The connector is keyed.

9) Carefully check all cable plug-ins against the instructions and Figure 1
details.

g

R

00 é—PMElS'EHm__Vﬂs“qu_

|
— T
0 =
[O I
= 2p) T EgRe
= = RS<—PINS 20
Qs = T4
L})
= - ')
Fzzsugé ff:; 1f?_TTE;?Q‘PLNS 25
= ;;3 1 T4
= b == = .
= — S [l
'a = o rNag]f_s;”f;rp:;;”nlnl
UE B = 31 _L5=EW AR
-g B = 22) |
o) E:j = RS EUR P DOTOTEIIL]
B = A4 |
= »
= PINZ

L 931F SouthWhisman Road Mountain View,CA 94041 (415) 965-1735

L Lo i
= 2
G £ N Wy
-)
oy -
: > S o
L i ‘ ”
i3 i
Tk Lo A, * i
- £ ' .
8 SO
L. ~ i . s '
(SR TREE Ty T P .
ivall X ‘ :
1 5
¥ &0 § o
5T =
. Taie .
e I 3 - san it
wed ¥] : i g T !
P . =5 : = X
v
Rl & i . «
- em = P ST i a L s e i Sl v — e cavea e =

10) Close your PET/CBM reconnecting any cables originally unplugged.

11) Turn on your PET/CBM, listen for the chirp and observe the turn on
message.

If the "Chirp" occurs, but the screen is full of random characters, you probably
have the 20 wire (step 6) cable forward one position on J4. Move it to the rear
one or two positions.

If no chirp occurs and the screen never comes on or is filled with characters,
you probably have the connection to UD7 wrong. Check the pin 1 position.

If you smell smoke, etc., you probably connected the power cable backwards,

12) Once the PET/CBM is running type:
POKE45@56,199:5YS4 <return>

you should see:
B*
PC IRQ@ SR AC XR YR SP
.3 Pdd5 E455 3@ @@ SE @4 F8

Then type: M 90@@-9@@F <return>

you should see:

ogdd 9ddr

¢ 9¢@d 20 EF E9 A9 5D 8D 7E 7F
: 90@@8 A9 E9 8D 7F 7F A2 FF 9A

=

Then type: M A@@@-Ag@F <return>

you should see:

M AJEd AdgF
: A@@@ D@ @F 2¢ 28 93 28 99 @3
: A@@8 4C C1 93 B1 3D D@ EA D8

Then type: M E9@@-E9QF <return>

you should see:
.M E9Q@ E9GF
.t E90F 20 41 54 20 4C 49 4E 45
.2 E978 @@ @D @A BA @A 4C 41 42

=

13) If you observe above a printed readout of $A@@A-$APPPF when you type
9d@@-9@dF, move the 20 pin gray ribbon cable (step 6) one position to the
rear and repeat step 12.

14) If you observe the above printed readout of $90@@-$90@F when you type
AD@d A@@F, move the 20 pin gray ribbon cable (step 6) one position to the
front and repeat step 12.

231E South Whisman Road MountainView,CA 94041 (415) 965-1735

e ¥e
o) ~ -
! } Al
i
- . T
o
i - B ¢ - *
T e - T
P e - L r -

BLANK

15)

and U
POKE
and s

‘M

.s o..I

s se =

these

Now t

and s

.M

..

M

these

16)
front

17)
Comma

To test that the ROM/EPROMs, you removed from UD1l and UD12 and installed in UD3

D4 type: X <return> to exit the monitor to BASIC. Then type:
46106,251:5YS4 <return> Then type: M 9@0@d 9@@F <return>
ee: ROM TYPE

prd 99dF

9@@@ 4C @C 99 4C 45 92 4C 29 Command-0 CO-40N

9g@8 94 4C 87 94 A9 4C 85 79

9ged 99aF

9¢g@@ 4C @C 99 4C 3D 92 4C DD Command-0 CO-80N

9@@8 93 4C 3B 94 A9 4C 85 74

99ad 9darF

9@@@ 3E 41 5D 55 3D @@ 3F 48 VISICALC

9@@8 48 48 3F @@ 41 TF 49 49
are ROMS/EPROM you moved from UD12 to UD4.
ype: M AQ@@ Ag@F
ee:
AdQY AQgF
A@@@ 4C 75 A2 A9 PA 8D C2 @3 Toolkit TK4ON
A@@8 A9 @¢ 8D C3 03 85 83 85
APPD ABGF
Ad@d @1 @A 64 64 BA @1 @D 8D WordPro 4+ (5054)
A@@8 13 93 5F DF 5C @3 83 12
are ROMs you moved from UD1l to UD3.

Once MacroTeA is running satisfactorily, you might consider screwing down the
rightfoot with the screw in the right side center of the logic board.

Now go to page 5 of the manual to start MacroTeA or page 22 to turn on the
nd-0 or the Toolkit,

231E South Whisman Road MountainView,CA 94041 (415) 965-1735

BLANK

