
Version 2.01 01 May 2012

 Page 1 of 23

Reverse Engineering of the (guessed) operation of the 6702
chip to enable use of the VICE emulator in 6809 mode

with the Waterloo Language Software and removal of the
protection from the Waterloo Language Disks to enable

users of a real SuperPET (but with a faulty 6702) to
continue to enjoy their machine.

Background

The Commodore SuperPET (also known as the SP9000) contains two microprocessor sub-
systems: a Mostek 6502 and a Motorola 6809. A common memory and peripheral sub-
system is shared between the two microprocessors. Because the two microprocessors utilise
different instruction sets, two sets of ROMS are required – one set for the 6502 and the other
set for the 6809. An external switch allows the user to select which of the two
microprocessors take control of the machine at any given time.

The 6502 ROMS make the system behave in a manner similar to a ‘normal’ 80 character-
wide screen PET. When the SuperPET is switched into 6809 mode – the ROMS only contain
a basic ‘bare’ operating system (enough to load software from an attached floppy disk unit).
The disk-resident software languages (microAPL, microBASIC, microFORTRAN,
microPASCAL, microCOBOL and a 6809 Assembler) were developed by the University of
Waterloo in Ontario, Canada.

The SuperPET contains an integrated circuit identified as a “6702”. No known information is
available on this device. It has been assumed that this 6702 device is an early form of
software protection as the Waterloo software fails to operate correctly should this device fail
or be removed (early SuperPETs had the 6702 integrated circuit mounted on a small daughter
board).

Figure 1 - The daughter board with the 6702 device (Photograph by Mike Naberezny).

Version 2.01 01 May 2012

 Page 2 of 23

VICE (the VersItile Commodore Emulator) is a software project to enable Commodore
software to execute on more modern hardware and software platforms (e.g. a modern PC).
Currently, VICE only supports the Commodore range of products that utilise the 6502
microprocessor. This includes the SuperPET – but only in 6502 microprocessor mode.
Developers have been working to incorporate a 6809 microprocessor emulator within VICE
with the intention of enabling the use of the Waterloo Language disks.

Once the VICE 6809 emulator was accurate enough to execute the resident ROM software,
problems immediately became evident as soon as the first software product was loaded from
disk and executed. The software promptly addressed the non-existent 6702 device within the
emulator and crashed. This was not unexpected behaviour!

The problem now was to identify what the 6702 integrated circuit actually did without any
prior knowledge of the device’s operation.

Please note that this document does not condone the illegal copying and use of unlicensed
software. This text has been written to enable legitimate owners and users of SuperPET
software to continue to use and enjoy their computer even if the 6702 device becomes
defective and cannot be replaced.

Sleuthing

A ‘dummy’ 6702 function was created within the software emulator to trap and display all
attempts by the executing 6809 software to access the peripheral addresses occupied by the
6702 device. This enabled the bank number and the memory address of the instruction
causing the memory address to be displayed (along with the data it was writing if it was a
write access). A read access would always return a fixed, pre-determined number (0 in my
case).

Figure 2 - Sample session with a 'dummy' 6502 function.

Version 2.01 01 May 2012

 Page 3 of 23

Notice the ‘crash’ at the end as the Waterloo editor detects a non-responsive or faulty 6702
and forces a subroutine to be executed within the ROM called ‘suicide’ – you can work out
for yourself what that subroutine does from its name!

From the list of addresses, it was then possible to use a 6809 debugger to disassemble the
subroutine code used to access the 6702.

Figure 3 - Sample debug session on the Waterloo EDITor.

For those that are interested, there follows a disassembly of the 6702 validation subroutine
from bank number 1 of the Waterloo microEditor starting from memory address $9852.
Notice that the above disassembly (obtained from the Waterloo microMonitor) does not
exactly match the code below. The disassembly below was obtained from the VICE 6809
debugger – which decodes the instruction byte sequence slightly more correctly than the
Waterloo microMonitor (see the instruction at address $98A6 for an example).

Version 2.01 01 May 2012

 Page 4 of 23

Figure 4 - Sample disassembly of the Waterloo microEditor 6702 validation subroutine.

By running each of the Waterloo language packages in turn it was noted that each of the
software subroutines that addressed the 6702 device appeared to be identical – albeit starting
at a different bank number and/or memory address. Disassembly proved that the code within
the subroutines were, in fact, identical.

Attempt #1

The first attempt to disable the 6702 checking consisted of identifying the start address of the
validation subroutine in each of the Waterloo languages, determining the value in the 6809
processor registers that should have been returned to the caller if a successful 6702 byte

Version 2.01 01 May 2012

 Page 5 of 23

sequence had been detected, and patching the code to return these values. This solution failed
to work! It was later identified that the 6702 subroutine code is ‘check summed’ by another
embedded subroutine elsewhere. Any attempt to patch the 6702 validation subroutine without
making a corresponding change to the checksum algorithm is doomed to failure. I know this
now!

Attempt #2

It was identified that all accesses to the 6702 validation subroutine went through the ROM
code ‘bankswi’ (bank switch) subroutine. This subroutine maps in the correct bank of
memory into the address window from $9000 through $9FFF and performs a JSR (Jump to
Sub-Routine) to the specified address in the bank switched memory. A return from the called
subroutine then re-enters the ROM ‘bankswi’ subroutine once again which restores the bank
of memory in force prior to the call and returns back to the original caller.

The 6809 emulator’s JSR instruction was then modified to detect the bank number and target
address for the call and to *** NOT *** invoke the subroutine if it matched a table of
specific addresses (previously identified in #1 above). Under this circumstance, the 6809
processor’s A and B registers and flags would be set to the correct state to ‘fake’ a ‘good’
return from the 6702 validation subroutine without affecting the actual byte sequence of the
subroutine itself in memory. This prevents the (currently unidentified) checksum subroutine
from detecting an intrusion!

This solution almost worked! Further investigation of the ROM ‘banksw’ subroutine
identified that it was also possible for this code to determine that the caller and the target
subroutine were in the same memory bank as each other and that no bank switch was
therefore necessary. Under these circumstances a JMP (JuMP) was performed rather than a
JSR. This necessitated that a similar modification was undertaken to the 6809 emulator’s
JMP instruction.

It was considered that this modification to the 6809 emulator could result in ‘false positives’
being identified (i.e. legitimate code from one language calling a valid subroutine in the same
bank and at the same address as a completely different language). This ‘false positive’ could
have resulted in an incorrectly functioning language processor as the target subroutine would
not have been executed, and the 6809 processor registers potentially corrupted! To overcome
this potential pitfall, the 6809 emulator was further modified to contain additional checks
thus minimising the probability of this occurring (e.g. that the JSR or JMP instruction was
occurring at a known address within the ROM ‘bankswi’ subroutine and that the target
address contains the correct first few bytes of the expected 6702 validation subroutine).

Version 2.01 01 May 2012

 Page 6 of 23

The bank numbers and addresses for the second release of the Waterloo Language software
are given in the table below:

Waterloo
Language

Software
Version

Date Bank
Number

Subroutine
Address

(Hex)
EDIT 1.1 1982 1 9852

PASCAL 1.1 1982 5 9000
BASIC 1.1 1981 5 93F0

FORTRAN 1.1 1981 0 960C
APL 1.1 1982 6 9F12

COBOL 1.0 1981 0 9240
DEVELOPMENT

ASSEMBLER
1.1 1981 5 9A05

DEVELOPMENT
LINKER

1.0 1981 8 94B6

DEVELOPMENT
EDITOR

1.1 1982 2 9852

Figure 5 - Table of 6702 validation subroutine addresses for the various Waterloo languages.

This resulted in a correctly functioning suite of Waterloo Language software – but at the
expense of hard-coding the 6809 emulator with a list of addresses specific to the software
being executed. These modifications were only valid for the second release of the Waterloo
Language Disks. The first release of the Waterloo Language disks contained different
addresses (as the software build is slightly different) and the solution would not therefore
work.

The 6809 emulator was subsequently updated to include the addresses for the first release –
but at the expense of further hand-crafting!

Whilst this solution works in a software emulator environment (like VICE) – it is neither
elegant nor will it help existing SuperPET owners where their 6702 integrated circuit has
become defective.

Attempt #3

By analysing a disassembly of the 6702 validation code (determined from the above table of
bank numbers and addresses), the following course of action was identified:

 Ignore all data writes to the 6702 and concentrate on the data reads from the device
only.

 Simplify the 6702 validation subroutine as far as possible by removal of what

appeared to be superfluous code. This identified that the subroutine accessed 15 data
bytes in total from the 6702 to perform one complete successful pass of the 6702
validation algorithm.

 Code the resulting simplified algorithm up in ‘C’ and use a random number generator

(a Monte Carlo method) to ‘guess’ at the 15 data bytes that may have been returned

Version 2.01 01 May 2012

 Page 7 of 23

from the 6702. Run the validation algorithm to identify if the guessed solution is the
correct one or not. Keep repeating until a successful guess has been identified and
print the result out. Keep iterating to find any further valid solutions.

This course of action identified a number of 15-byte sequences that would cause the existing
6702 validation code to ‘think’ that it was communicating with a valid 6702!

Figure 6 - Sample of successful Monte Carlo hits for the 6702 data table values.

The hand-crafted hacks to the JMP and JSR instructions of the 6809 emulator were
immediately removed and code inserted into the ‘dummy’ function for the 6702 emulator to
return one of the previously identified byte sequences (the first hit if my memory serves me
correctly). This necessitated expanding the 15-byte data table to include additional bytes used
to return ‘dummy’ values to 6809 instructions that did not appear to have any bearing on the
logic (e.g. the ASL instruction where a value read from the 6702 was modified by the 6809
instruction and fed back to the 6702 – but the data actually read from or written to the 6702
was actually discarded by the validation subroutine).

All instruction data writes to the dummy 6702 function are ignored by the emulator (e.g. the
STA and STB instructions identified in the disassembly).

Version 2.01 01 May 2012

 Page 8 of 23

Figure 7 - Snippet of code from the 6809 emulator's dummy 6702 function showing the lookup table.

This also resulted in a fully working 6809/6702 emulator without any hand-crafted internal
hacks.

This solution could be extended into hardware by implementing the look-up table in an
EPROM and arranging for a counter to cycle through the look-up table for each read from the

Version 2.01 01 May 2012

 Page 9 of 23

6702 device. Writes to the 6702 device should be ignored. The counter should be reset to
zero on power-up.

Postscript: The first analysis of a real 6702 indicates that it does not appear to work this way
and that the writes to the 6702 do (in fact) alter the returned read values. To be continued…

Attempt #4

Interest has been shown in removing the 6702 protection totally from the Waterloo Language
disks. Some success has previously been obtained with the microEditor – but this has not been
extended to the other Waterloo language tools.

As we already know the address of the start of the 6702 validation subroutine for each language
module it was possible to patch the subroutine with instruction bytes to return with the expected
result in the 6809 CPU registers. It was also already known that this solution did not work as
expected due to the presence of a checksum subroutine. The checksum subroutine was hunted
down in the microEditor and the checksum of the existing 6702 validation subroutine determined
by hand by inspection of the disassembly. The checksum of the required patches to the 6702
validation subroutine was then determined and the modification to the checksum subroutine
identified to make the resulting check pass.

Figure 8 - Sample disassembly of the Waterloo microEditor checksum subroutine.

The astute reader will identify that the operand address located at instruction $9B92 of this
disassembly (#$9852) matches with the start address of the microEditor 6702 validation
subroutine disassembly presented in Figure 4; and that the immediate operand value located at
instruction $9B9B of this disassembly (#$39) matches with the hexadecimal coding of the RTS
instruction at the end of the disassembly of the subroutine presented in Figure 4.

Version 2.01 01 May 2012

 Page 10 of 23

Fortunately, the code for both the 6702 validation subroutine and the checksum subroutine
appears to be identical across all of the Waterloo Language software. The initial byte sequences
of interest were identified in the D64 disk images and checked further by hand to ensure that
they corresponded to the actual subroutines of interest. A check was also made to ensure that the
identified checksum subroutine actually pointed to the address of an already identified 6702
validation subroutine!

Each of the identified disk addresses were converted into track and sector numbers and byte
offsets within the sector.

The d64Editor.exe utility was then used to first verify that the identified track and sector
combinations did actually belong to the expected utility (another cross-check) and to perform the
patch.

Each patch was performed in a logical manner:

 Make sure that the Waterloo Language tool worked as expected with the 6809 emulator
without the patches. Ensure that the emulator reported 6702 accesses.

 Make the patch to the selected 6702 validation subroutine first.

 Make sure that the Waterloo Language tool does not access the 6702 when run under the

6809 emulator. It should be possible to load pre-existing application software from disk-
resident files and to run them but not to edit the source code. This appears to be the effect
of hacking the 6702 validation subroutine (i.e. the checksum subroutine fails with the
result is that the in-built editor is designed to annoyingly misbehave). Note that
microBASIC will just fail as it does not contain the same editor as the other language
tools.

 Make the patch to the selected checksum subroutine second.

 Make sure that the Waterloo Language tool still does not access the 6702 when run under

the 6809 emulator – but that the language tool and in-built editor now is fully functional.

 Repeat for all of the Waterloo Language Tools.

The identified patches required are presented on the last few pages of this document.

Test out all languages using disk-resident test programs.

I have configured my SuperPET emulator to run the first Waterloo Software Disk Image (#1)
from disk8 and the second Waterloo Software Disk Image (#2) from disk9/0. This should only
affect the testing of the Waterloo 6809 Development package (the linker in particular).

Please do not consider these test programs to be:

1. Good programming practice!
2. 100% tests of the Waterloo languages!

Version 2.01 01 May 2012

 Page 11 of 23

However they have proved useful to me as example programs that are known to work and do
highlight admirably the situation when the 6702 is missing or not working as intended. I pass
them on to you to help you test out all the Waterloo language components irrespective of
whether you are familiar with the computer language concerned or not.

Testing EDIT:

Invoke the ‘e<RETURN>’ option from the initial ROM start-up menu.

The editor should start and you will be prompted to press the <RETURN> key.

Invoke the command “g hd.txt<RETURN>”. Ten lines of “Hello Dave” should be loaded
and displayed.

Figure 9 - Sample output from microEditor after loading text file hd.txt

You should be able to move around within the displayed text and insert/delete/modify text lines
as you wish.

Enter the command “bye<RETURN>” to quit from the editor and return to the ROM menu.

Don’t forget that you need to be in “command mode” for the editor to take notice of the bye
command!

Testing PASCAL:

Invoke the ‘p<RETURN>’ option from the initial ROM start-up menu.

The PASCAL language should start and you will be prompted to press the <RETURN> key.

Invoke the command “g hd.pas<RETURN>”. This should load a test PASCAL source program
from the disk into the in-built editor.

Invoke the command “run<RETURN>”.

Version 2.01 01 May 2012

 Page 12 of 23

Ten lines of “Hello Dave” should be displayed.

Figure 10 - Sample output from microPascal after running program hd.pas

Press <RETURN> to return to the in-built editor.

Enter the command “bye<RETURN>” to quit from PASCAL and return to the ROM menu.

Testing BASIC:

Invoke the ‘b<RETURN>’ option from the initial ROM start-up menu.

The BASIC language should start.

Invoke the command “old “hd.bas”<RETURN>”. This should load a test BASIC source
program from the disk.

Invoke the command “run<RETURN>”.

Ten lines of “Hello Dave” should be displayed.

Version 2.01 01 May 2012

 Page 13 of 23

Figure 11 - Sample output from microBASIC after running program hd.bas

Enter the command “bye<RETURN>” to quit from BASIC and return to the ROM menu.

Testing FORTRAN:

Invoke the ‘f<RETURN>’ option from the initial ROM start-up menu.

The FORTRAN language should start and you will be prompted to press the <RETURN> key.

Invoke the command “g hd.for<RETURN>”. This should load a test FORTRAN source
program from the disk into the in-built editor.

Invoke the command “run<RETURN>”.

Ten lines of “Hello Dave” should be displayed.

Figure 12 - sample output from MicroFORTRAN after running program hd.for

Version 2.01 01 May 2012

 Page 14 of 23

Press <RETURN> to return to the in-built editor.

Enter the command “bye<RETURN>” to quit from FORTRAN and return to the ROM menu.

Testing APL:

Invoke the ‘disk9/0.a<RETURN>’ command from the initial ROM start-up menu.

The APL language should start.

Invoke the command “)LOAD HD.APL<RETURN>”. This should load a test APL workspace
from the disk into the in-built editor.

Invoke the function “HD<RETURN>”.

Ten lines of “HELLO DAVE” should be displayed.

Figure 13 - Sample output from MICRO APL after loading workspace HD.APL and executing function HD

Enter the command “)OFF<RETURN>” to quit from APL and return to the ROM menu.

Note that in order to use the APL language you will find it convenient to have an APL keyboard.
If you do not have such a keyboard, you will find that the keys on your keyboard have been
magically re-assigned! This means that the ‘)’ character is no longer above the ‘9’ on the
Commodore Business keyboard – but has moved to be SHIFT ‘@’ (I think)… If you press
SHIFT ‘9’ by mistake – you will get the ‘ˇ’ character instead. APL uses a special keyboard and a
special character generator ROM – meaning that there are multiple opportunities for a software
emulator to get it wrong! I have specifically written my SuperPET emulator to cope with APL –
but I can’t vouch for the accuracy of others.

Testing COBOL:

Invoke the ‘disk9/0.COBOL<RETURN>’ command from the initial ROM start-up menu. Note
that there is no short-cut displayed in the menu for COBOL and that the word COBOL must be

Version 2.01 01 May 2012

 Page 15 of 23

entered in full and in upper-case letters (unlike the other language processors where a single
lower-case letter short-cut will suffice).

The COBOL language should start and you will be prompted to press the <RETURN> key.

Invoke the command “g hd.cbl<RETURN>”. This should load a test COBOL source program
from the disk into the in-built editor.

Invoke the command “run<RETURN>”.

Ten lines of “Hello Dave” should be displayed.

Figure 14 - Sample output from microCOBOL after running program hd.cbl

Press <RETURN> to return to the in-built editor.

Enter the command “bye<RETURN>” to quit from COBOL and return to the ROM menu.

Testing DEVELOPMENT:

Invoke the ‘disk9/0.d<RETURN>’ command from the initial ROM start-up menu. This will
start the development software and will present you with a small submenu of choices:

Version 2.01 01 May 2012

 Page 16 of 23

Figure 15 – Development submenu

Invoking the development assembler:

Invoke the 6809 assembler by entering the command “a<RETURN>”.

The assembler should start and prompt you to enter a filename. This is the filename of a 6809
source code program. Enter the filename as “hd<RETURN>”.

The assembler should start to assemble the source code program (located in text file hd.asm) and
produce an object file (in hd.b09) and a listing file (in hd.lst).

Figure 16 - Sample output from the 6809 assembler after processing source file hd.asm

When the assembly process is complete, press <RETURN> to exit the assembler and return to
the development submenu.

Invoking the development editor:

Version 2.01 01 May 2012

 Page 17 of 23

Invoke the development text editor by entering the command “e<RETURN>”.

The editor should start and you will be prompted to press the <RETURN> key.

Invoke the command “g hd.lst<RETURN>”. The assembler listing file (generated in the step
above) should be loaded and displayed.

Figure 17 - Sample output from microEditor after loading listing file hd.lst

You should be able to move around within the displayed text as you wish.

Enter the command “bye<RETURN>” to exit the editor and return to the development
submenu.

Invoking the development linker:

Invoke the 6809 linker by entering the command “l<RETURN>”.

The linker should start and prompt you to enter a filename. This is the filename of a linker
control file. Enter the filename as “hd<RETURN>”.

The linker should start to link the object code program (located in object file hd.b09) with the
entry points to the ROM subroutines (located in library file disk9/0.watlib.exp) to produce an
executable file (in hd.mod) and a map file (in hd.map).

Version 2.01 01 May 2012

 Page 18 of 23

Figure 18 - Sample output from microLinker after processing command file hd.cmd

When the linking process is complete, press <RETURN> to exit the linker and return to the
development submenu.

Invoking the development monitor:

Invoke the debug monitor by entering the command “m<RETURN>”.

The prompt when in the monitor is the ‘>’ character. This character means that the debug
monitor is waiting for a new command.

Load the executable module created by the linker by entering the command:

“l hd.mod<RETURN>” in response to the monitor’s ‘>’ prompt.

Execute the executable module just loaded at the pre-defined start address by entering the
command:

“g 1000<RETURN>” in response to the monitor’s ‘>’ prompt.

Ten lines of “Hello Dave” should be displayed; followed by the word “interrupt”; followed
by a dump of the 6809 CPU registers. The monitor should respond with the usual ‘>’ prompt.

Version 2.01 01 May 2012

 Page 19 of 23

Figure 19 - Sample output from microMonitor after executing hd.mod

Enter the command “q<RETURN>” to quit from the monitor and return to the development
submenu.

Enter the command “q<RETURN>” to quit from the development submenu and return to the
ROM menu.

This completes the test of the Waterloo Language Software.

Version 2.01 01 May 2012

 Page 20 of 23

Patches to the second release of the Waterloo Language disks (D64 format) to remove the 6702 dongle protection.

Waterloo Language Disk #1

Language Version Date
BASIC V1.1 1981
EDIT V1.1 1982
FORTRAN V1.1 1981
PASCAL V1.1 1982

Waterloo Language Disk #2

Language Version Date
APL V1.1 1982
COBOL V1.0 1981
DEVELOPMENT (ASSEMBLER) V1.1 1981
DEVELOPMENT (LINKER) V1.0 1981
DEVELOPMENT (EDITOR) V1.1 1982

Version 2.01 01 May 2012

 Page 21 of 23

6702 Validation Subroutine Byte Sequences of Interest

1F 41 32 72

Needs to be patched with:

4F 5F 39 72

where: 4F is a CLRA instruction.
 5F is a CLRB instruction.
 39 is a RTS instruction.

Checksum Subroutine Byte Sequences

C3 FF 03 E7

Needs to be patched with:

C3 FF 52 E7

Where 52 (hex) is the data byte to make the computed checksum correct for the patches to
the 6702 validation subroutine as detailed above.

The addresses of the checksum subroutines within memory have not been determined (except for
EDIT) and are (as a result) presented as ‘????’(see overleaf). These were identified on the D64
disk image directly and I couldn’t be bothered to identify them in the memory image loaded from
disk.

Version 2.01 01 May 2012

 Page 22 of 23

Waterloo Language Disk #1

6702 validation byte sequences found at:

Disk offset in
bytes (hex) from

start of disk
image.

Track number
(decimal).

Sector number
(decimal).

Byte offset within
sector (hex). Language.

Bank number
when loaded into

memory.

Address (hex)
when loaded into

memory.
86D7 T07 S08 D7 PASCAL 5 9000

113AE T14 S02 AE BASIC 5 93F0
18D63 T20 S02 63 EDIT 1 9852
1A820 T21 S10 20 FORTRAN 0 960C

Checksum byte sequences found at:

Disk offset in
bytes (hex)

from start of
disk image).

Track number
(decimal).

Sector number
(decimal).

Byte offset
within sector

(hex). Language.

Bank number
when loaded
into memory.

Address
(hex) when
loaded into
memory.

Address (hex)
of

corresponding
6702 validation

subroutine.
8E89 T07 S16 89 PASCAL 5 ???? 9000
FD1B T13 S01 1B BASIC 5 ???? 93F0

198C9 T20 S13 C9 EDIT 1 9BB2 9852
1A7AA T21 S09 AA FORTRAN 0 ???? 960C

Note that there appears to be a 1:1 correspondence between the number of 6702 validation subroutines and the number of checksum subroutines.

Version 2.01 01 May 2012

 Page 23 of 23

Waterloo Language Disk #2

6702 validation byte sequences found at:

Disk offset in
bytes (hex) from

start of disk
image.

Track number
(decimal).

Sector number
(decimal).

Byte offset within
sector (hex). Language.

Bank number
when loaded into

memory.

Address (hex)
when loaded into

memory.
72C T01 S07 2C DEVELOPMENT

(ASSEMBLER)
5 9A05

5024 T04 S17 24 DEVELOPMENT
(EDITOR)

2 9852

E884 T12 S01 84 APL 6 9F12
1794C T19 S01 4C COBOL 0 9240
2845E T33 S12 5E DEVELOPMENT

(LINKER)
8 94B6

Checksum byte sequences found at:

Disk offset in
bytes (hex)

from start of
disk image).

Track number
(decimal).

Sector number
(decimal).

Byte offset
within sector

(hex). Language.

Bank number
when loaded
into memory.

Address
(hex) when
loaded into
memory.

Address (hex)
of

corresponding
6702 validation

subroutine.
318A T03 S07 8A DEVELOPMENT

(EDITOR)
2 ???? 9852

E879 T12 S01 79 APL 6 ???? 9F12
17941 T19 S01 41 COBOL 0 ???? 9240

Note that there are more 6702 validation subroutines than there are checksum subroutines. It would appear that the assembler and linker only
validate the 6702 (i.e. there is no checksum subroutine). The checksum subroutine for the development package appears to be on the editor 6702
validation subroutine only.

