I Was Blind, But Now I Can C

by Robert W. Dray

Have you ever felt that the devil sent us
computers to punish us for all the times
we did the right and honourable thing?

I own a SuperPET, but at work I use
the new ICON computer with its Unix-
like operating system. Recently, I was in-
formed that I was to teach the C pro-
gramming language beginning in January
1986. I think my superiors selected C
because it was not one of the many
languages I could practice at home on the
SuperPET. Never fear, TPUG to the
rescue with Super-0S/9, another Unix-
like system, for the SuperPET.

When I first heard that TPUG was of-
fering 0S-9 for the SuperPET, I was
elated. I would now have an operating
system similar to the one on the ICON,
and I could get a C compiler for it. With
no hesitation, I sent the cheque, and some
time later I received a phone call to come
into town and pick up a parcel.

With great excitement I opened the
package containing several books, some
disks and a cute little circuit board. On
reading the instructions, I learned to my
horror that I would have to take a solder-
ing iron to my SuperPET. How could I
violate a long-time friend that way?
Nevertheless, after 24 hours of studying
the diagrams and wondering whether or
not I was capable of such delicate
surgery, I opened the lid and started.

The instructions were fairly clear, and
I eventually reached the point where they
said to turn on the computer, and run the
test program. The test didn’t work.

You can imagine the sinking feeling in
the pit of my stomach. Had I killed the
patient? What was this act of foolishness
going to cost me to have repaired?

I pulled the parts back out and check-
ed all the pins and solder joints;
everything looked okay to me, so I put it
back together. This time it passed the
test, and I had OS-9 running on my own
computer.

Unlike Commodore’s own operating
system, which is burned into ROM chips,
08-9is disk-based. If you wish to change
Commodore’s BASIC 2.0 to BASIC 4.0,
for example, you have to remove some
chips and replace them with new ones. To
modify a disk-based operating system,
you simply put the new information on
the disk.

Disk-based systems are easily per-
sonalized. If you don’t like the opening
message on power up, you can easily
change it. If you are very weird, you even
can change the names of the commands
so that dog instead of dir will produce a
directory of the disk. You could fix it so
that nobody would be able to use your
system because only you know the
commands.

With Super-0S/9 up, my next task was
to get C, so I ordered it from TPUG.
After some initial problems (my order got
misplaced), I finally received the package
of two disks and a book.

The book, like other computer-related
books, assumes you know far more than
you actually do. There I was with two C
disks plus one operating system disk.
Now, my 4040 disk drive has only two
slots and, any way you figure it, three
disks can't fit into two slots! After some
reading and a lot of frustration, I notic-
ed that there were two versions of the C
compiler. The one you use depends on
which version of 0S-9 you are running.
I could put aside the disk for Level 2 0S-9
systems, and use the one with the pro-
gram cel. Now I was down to two disks
and two drive slots. But which goes
where?

0S-9 was meant for very large disk-
based systems. A single Commodore
173K diskette can have a very long direc-
tory if the individual programs are short.
You can imagine how long the directory
would be if the disk could hold 10
megabytes. To get around this problem,
Unix-like systems create a tree structure
of directories and subdirectories. Each
directory or subdirectory can contain files
or subdirectories. This enables you to
organize the contents of your disk so that,
for example, all the files related to one
job are in the same directory. This system
makes makes it much simpler to deal with
crowded disks.

One of these directories is called emds,
and this is where the 0S-9 system goes
to find out how to perform any of the
commands you give it. Well, each of the
two disks, the C compiler and the
operating system disk, had a emds direc-
tory. With a flash of insight, I figured
that when using the compiler, I would not
need the 0S/9 disk, since the compiler
disk had its own emds directory. Thus,
the compiler disk goes into drive 0.

The problem of where to stuff these
disks required only three days to solve.
(Nearing the third day, my guesses as to
where to stuff them were becoming in-
creasingly imaginative.) The next pro-
blem was to determine where to place the
C program I wanted to compile. Since I
didn’t need drive 1 for anything else, I
decided to create a program and store it
there.

When using the tree structure of direc-
tories, the directory in which you are
located is called your working or data
directory. You move from one (sub)direc-
tory to another with the command chd
xxxx, where xxxx’ is the name of the
directory you wish to enter. If the direc-
tory is many layers down in this tree
structure, you can specify the complete
path, starting with the drive number. For
example, you may wish to go from a
directory on drive 0 to one called sam on
drive 1. You would use the command:

chd /d1/school/chemistry/sam.

In addition to the working directory,
there is another directory called the ex-
ecution directory. This is the directory
you tell the operating system to search
to find out what a given command means.
When you first power up, this execution
directory is automatically set as the emds
directory on drive 0. Now, wouldn’t you
think that placing the compiler disk in
drive 0 with a emds directory on it, would
enable the system to find the commands.
No way, Jose! You've no idea how I have
come to hate the message error #216.

Eventually I realized that my normal-
ly intelligent machine might not be so
gifted after the radical brain surgery I
had performed, and I decided to tell it to
change its execution directory to cmds on
drive 0, by using the command chx
/d0/emds. It worked! Once you have
changed the disk in drive 0, OS-9 ap-
parently can’t find the new one until you
tell it where to look.

The time had come: I moved to the
directory called e.prgs in drive 1 that con-
tained my C program (with chd
/d1/c.prgs). The compiler was in drive 0,
so I used chx /d0/emds to inform the
operating system where the the com-
mands were to be found. I then gave the
command ccl test.c to start compiling
my program. The disk drive started to
whir, and a message appeared indicating

16 Issue 24

that the compiler had started. Slowly,
other messages appeared on the screen
as various parts of the ecompilation pro-
cess were completed. Finally the last step
was under way as the link message
appeared.

This compiling process was slow — ten
minutes or so — but it was working!
Then, suddenly, a new message: linker
fatal... unable to produce output
file. .. error #004. I quickly grabbed my
list of error messages, only to find that
there was no error #004. . . I had had bet-
ter moments in my life.

C source programs always end with the
suffix .c. The compiled program has the
same, but without the suffix. Looking
around, I noticed a program called test
in the emds directory on drive 0, but
there was nothing in it. For the next few
days, I tried every thing I could think of,
and the only thing I noticed was that the
computer was trying to put the final com-
piled program in the emds directory on
drive 0, rather than in the directory con-
taining the original program on drive 1.

Eventually, after several calls to
TPUG, I reached Gerry Gold, who sug-
gested 1 come out to a SuperPET

meeting. Reluctantly admitting defeat, I
made the journey.

At the meeting, Avy Moise told me that
the compiler disk was full and that there
was no room on it for the output file,
hence the error message. The secret is to
redirect the final output from its normal
default destination of /d0/cmds to drive
1 (in a directory called c.prgs, in this case)
with the command:

ccl test.c -f=/d1/c.prgs/test

The gods smiled on me: the compile work-
ed. I had written and compiled my first
C program on my own computer, and it
took less than six months.

At the SuperPet meeting, someone
suggested a way to speed up the process
by creating and using a ramdisk. In many
computers, you can tell the computer that
a portion of its RAM (random access
memory) is a disk, which can be format-
ted and used just like any other disk.
When you use the ramdisk, the data
transfer is internal to the computer, and
so is much faster. In the course of com-
piling a C program, many temporary files
are created as the compiler gradually
changes your source code into machine

language. If it could write these files in-
ternally on a ramdisk, the compiling pro-
cess would be much faster.

To create the ramdisk, you first ask for
a directory of the ramdisk with the com-
mand dir /dram. This produces an error
message, since the disk doesn't yet exist.
You then format the ramdisk with for-
mat /dram. This prints some data on the
screen and asks a question. Answer “y”,
and when it asks for the name of the disk,
you simply give any name that you might
give for any other disk.

At this point, I moved to the directory
containing my C program, and copied the
program to the ramdisk. I then used chd
/dram to move into the ramdisk as my
working directory and gave the command
to compile the program. This time the
compiling process went much faster, re-
quiring only two or three minutes. I
directed the final output back to the
c.prgs directory in drive 1.

It has been a long and frustrating trip,
but I try to tell myself that it was just one
of life’s little tests to allow me to prove
once again that people can be the masters
of their machines — if they are not driven
insane first. O

0S/9 Software
NOW AVAILABLE!

Word Procéssor e
Stylograph Il

Mail merge, Spell checker. Menu driven, fast.
Extensive features. Formats to screen as you work
... US $149 Cdn $210

C Compiler

A full implementation of K & R standard C, with
double precision variables. US $138 Cdn $170

Also Pascal Compiler US $160 Cdn $225

BASICO09

A fully structured, sophisticated semi-compiled (I
code) BASIC. See Byte magazine April 1984
.. US $110 Cdn $155

DYNACALC
A full featured spreadsheet US $99 Cdn $139

DynaStar

A full screen (similar to microEDIT) editor, text

formatter and spell checker. US $90 Cdn $127
Also available DYNAFORM (Text Formatter),
EIYINASEELT - Tk 0 e US $110 Cdn $150

To Order: Send a cheque or money order (add $10 for
shipping/handling and 7% PST where applicable) to:

TPUG,
101 Duncan Mill Rd., Suite G-7,
Don Mills, Ontario, Canada M3B 173

Order Now!
- price increases August 1, 1986

