

PHP DEVELOPER

BEST PRACTICES

Mike Naberezny
Matthew Weier O’Phinney

Sep 15, 2008 | PHP Developer Best Practices

Mike Naberezny

• http://mikenaberezny.com
• http://maintainable.com
• http://ohloh.net/accounts/mnaberez

ZendCon ‘06 ZendCon ‘07

http://mikenaberezny.com
http://mikenaberezny.com
http://maintainable.com
http://maintainable.com
http://ohloh.net/accounts/mnaberez
http://ohloh.net/accounts/mnaberez

Sep 15, 2008 | PHP Developer Best Practices

Matthew Weier O’Phinney

• http://weierophinney.net/matthew
• http://framework.zend.com
• http://ohloh.net/accounts/weierophinney

ZendCon ‘06 ZendCon ‘07

http://weierophinney.net/matthew
http://weierophinney.net/matthew
http://framework.zend.com
http://framework.zend.com
http://ohloh.net/accounts/15780
http://ohloh.net/accounts/15780

Sep 15, 2008 | PHP Developer Best Practices

About You

• Web developer, using PHP

• Is your code well organized and maintainable?

• Are you using source control?

• Is your software documented?

• Do you have automated tests for your software?

Sep 15, 2008 | PHP Developer Best Practices

Agenda

• Today we will present ideas and techniques that you
can use to improve your development process.

• Not every technique can apply to every project.

• Start small; implement a few new practices at a time.

• Find what works for your team and iterate on that.

• Use this talk as a starting point to go off and learn more.

Sep 15, 2008 | PHP Developer Best Practices

Agenda

• Source Control

• Coding Standards

• Testing

• Documentation

• Deployment

• Q & A

Sep 15, 2008 | PHP Developer Best Practices

Source Control

Sep 15, 2008 | PHP Developer Best Practices

Source Control

• Problems Source Control Solve
• How do I know if somebody did something?

• How do others know I did something?

• How do I get my updates from others?

• How do I push my updates out to others?

• Do we have the old version?

• What changed?

Sep 15, 2008 | PHP Developer Best Practices

Source Control

• General types of source control:

• Distributed

• Non-Distributed

Sep 15, 2008 | PHP Developer Best Practices

Distributed Source Control

• Methodology
• Developers work directly on local copies or branches
• Changes are shared between repositories and/or developers

• Benefits
• No server necessary
• Typically very space efficient

� A git version of a Subversion repository may be 90% smaller

• Fork a project locally while keeping it synced with the master

Sep 15, 2008 | PHP Developer Best Practices

Distributed Source Control

• Issues
• “Master” repository is by convention

� Which is the canonical version?

• Harder to automate process based on commits

• Examples
• Git

� Developed for, and used by, Linux kernel development
� Gaining popularity with web developers (c.f. github.com)

• GNU Arch
� Developed for tracking kernel development

• Darcs
� “Theory of patches”
� Considered more “pure” implementation, small adoption

Sep 15, 2008 | PHP Developer Best Practices

Distributed Source Control

• Useful Git commands

• Create a branch on the fly and switch to it
� git branch branchname

• Switch to a branch
� git checkout branchname

• “Cherry-pick” commits to apply from the past hour
� git cherry-pick branchname@{1 hour ago}

• Create a source tarball of a given tag
� git archive --format=tar --prefix projname-
TAGNAME/TAGNAME | gzip - > projectname.tar.gz

Sep 15, 2008 | PHP Developer Best Practices

Non-Distributed Source Control

• Methodology
• Developers work on local checkouts or working directories
• Changesets are checked in- and out- of a central repository

• Benefits
• Canonical repository
• Easy to automate processes based on commits

Sep 15, 2008 | PHP Developer Best Practices

Non-Distributed Source Control

• Issues
• Server is necessary

� Single point of failure

• Branching is more difficult
• Limited offline functionality

• Examples
• CVS: Concurrent Versions System
• Subversion (SVN): A compelling replacement for CVS

Sep 15, 2008 | PHP Developer Best Practices

Non-Distributed Source Control

• Typical Workflow:

• Get an initial checkout of the code

• Make code changes

• Commit changes to the repository

• Update to latest change from repository

• Repeat

Sep 15, 2008 | PHP Developer Best Practices

Subversion

• Functions like a superset of CVS
• Easily move files between directories while preserving history
• Simplified process of tagging and branching
• Transactions for when things go wrong

• Extensible and supported by excellent tools
• Popular with many open source projects
• Integrate with other projects with svn:externals
• Migrate existing CVS repositories with cvs2svn

Sep 15, 2008 | PHP Developer Best Practices

Subversion Repository Layout

• project/

• trunk/

• tags/
� release-1.0/
� release-1.1/

• branches/
� production/
� version-1.0/
� version-1.1/

Sep 15, 2008 | PHP Developer Best Practices

Subversion Repository Layout

• Use the trunk/ for ongoing development

• Use branches/ for maintained releases
• Production branch: merge changes from development when

stable enough for production
• Release branches:

� Merge in security or bug fixes from trunk
� Create tags when releasing bug fixed versions

• Use tags/ for release/rollout snapshots

Sep 15, 2008 | PHP Developer Best Practices

Subversion Externals

• Use svn:externals to connect remote repositories

• Seamlessly merge your dependencies

• Track against anything in the remote repository: trunk, tags,
or even a specific revision

• Pulls code from the remote repository each time you do a
checkout or update

Sep 15, 2008 | PHP Developer Best Practices

Subversion Externals

• svn propedit svn:externals .

• In your editor:
directory [-r##] http://remote-svn-repository/path/

• Example (latest revision of trunk/):
framework http://framework.maintinable.com/svn/
framework/trunk/

• Example (specific revision of trunk/):
framework -r50 http://framework.maintinable.com/svn/
framework/trunk/

http://remote-svn-repository
http://remote-svn-repository
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk

Sep 15, 2008 | PHP Developer Best Practices

Subversion Hooks

• Allow you to observe and interrupt the commit process

• Implemented as shell scripts on the repository server
under the repository’s hooks/ directory.

• Hook scripts can be any language (PHP, Ruby, Python,
Tcl, shell...) as long as executable & named properly

• Example hooks:
start-commit, pre-commit, post-commit

Sep 15, 2008 | PHP Developer Best Practices

Subversion Hooks

• Useful Subversion Commit Hooks

• Pre-Commit:
� Reject changes that do not pass lint (php -l)
� Reject changes that violate coding standards (PHP_CodeSniffer)

• Post-Commit:
� Send email notification of the change to developers
� Run unit tests and send email on failure
� Rebuild DocBook documentation
� Update tickets on Trac or other issue tracker

Sep 15, 2008 | PHP Developer Best Practices

Source Control Summary

• Source control systems are necessary
• As a history of changes to your project
• To prevent developer change conflicts

• Subversion has many benefits
• Wide adoption
• Improved features over CVS
• Integrate remote repositories with svn:externals
• Hooks for extending its capabilities

• Distributed source control systems are rapidly
gaining popularity and worth a look.

Sep 15, 2008 | PHP Developer Best Practices

Coding Standards

Sep 15, 2008 | PHP Developer Best Practices

Why use coding standards?

• Focus on code, not formatting

• Consistency

• Readability

• Collaboration

• Maintenance

Sep 15, 2008 | PHP Developer Best Practices

What should coding standards provide?

• File, class, variable naming conventions

• Code formatting conventions

• Guidelines for consistency across the code

• Uniformity

Sep 15, 2008 | PHP Developer Best Practices

Learn from Others

• Don’t invent your own standard. All of the issues have
already been debated to death by many others.

• Use an established standard
• Minimize politics by choosing an external standard
• Choose a standard compatible with the libraries you use
• Use the standard as a requirement when outsourcing

• Stick to the standard you establish, don’t mix

Sep 15, 2008 | PHP Developer Best Practices

PEAR-like Coding Standards

• Originated with the Horde Project

• Well known, more accepted than any other

• Basis for many open source projects
• Horde
• Solar Framework
• PEAR
• Zend Framework

Sep 15, 2008 | PHP Developer Best Practices

Files and Directories

Server-side Code Client-side Code

Separate your code cleanly by type and responsibility.

Sep 15, 2008 | PHP Developer Best Practices

Files and Directories

• Class name used to name file

• .php extension

• Class name underscores convert to directory
separator:
• Spreadsheet_Excel_Writer
• Spreadsheet/Excel/Writer.php

• One class per file, no loose code

Sep 15, 2008 | PHP Developer Best Practices

Naming Conventions

• Class names are MixedCase

• Method names are camelCase

• Constants are ALL_CAPS

• Properties and variables are camelCase

• Non-public class members are _underscorePrefixed

Sep 15, 2008 | PHP Developer Best Practices

Source Formatting

• One True Brace
• Functions and Classes have the opening brace on the line

following the declaration, at the same indentation level
• Control Structures keep the opening brace on the same line as

the declaration

• Indentation
• Spaces only; no tabs
• Four (4) spaces per level of indentation
• Purpose is consistency of viewing

Sep 15, 2008 | PHP Developer Best Practices

Aside: Design Patterns

• What are design patterns? Why use them?

• Reusable ideas, not code

• Proven solutions to common design problems

• Better communication through shared vocabulary

Sep 15, 2008 | PHP Developer Best Practices

Aside: Design Patterns

• I need to notify other objects when an interesting
event occurs in the system: Observer

• I need only a single instance of this object to be
accessed during this HTTP request: Singleton

• I need to modify the output of an object or change its
external interface: Decorator

Sep 15, 2008 | PHP Developer Best Practices

Example

• All control structures use
braces; no one liners

• Keep lines 75-85 characters
in length, maximum

• No shell-style comments (#)

Sep 15, 2008 | PHP Developer Best Practices

Enforcing Coding Standards

• Automatically check your code against several common
standards or teach it your own standard

• http://pear.php.net/package/PHP_CodeSniffer

http://pear.php.net/package/PHP_CodeSniffer
http://pear.php.net/package/PHP_CodeSniffer

Sep 15, 2008 | PHP Developer Best Practices

Coding Standards Summary

• Adopt a coding standard in your organization

• Use an existing coding standard that plays well with the
libraries that you use

• Enforce usage of the standard

• Learn and use design patterns as part of your
development team’s vocabulary

Sep 15, 2008 | PHP Developer Best Practices

Unit Testing

Sep 15, 2008 | PHP Developer Best Practices

Unit Testing

• Untested code can be fragile and prone to regression.

• No time to write tests? Start writing tests instead of
reloading your browser and doing senseless debugging.
Increase your productivity and product quality.

• Start by testing the most critical aspects of your code,
strive for testing all of your code. Be practical.

• PHPUnit (http://phpunit.de) is one of the most
feature-rich and widely-used testing frameworks.

http://phpunit.de
http://phpunit.de

Sep 15, 2008 | PHP Developer Best Practices

Unit Testing
• Class representing a

person

• Until named otherwise,
the person has a
default name.

• The name can be
changed.

• The new name cannot
be empty.

Sep 15, 2008 | PHP Developer Best Practices

Unit Testing
• Each test examines a

discrete behavior or
“unit” of functionality of
the Person object.

• Each test asserts that the
behavior of the object
meets our expectations.

• If a code change breaks
the behavior, the tests will
fail and show the
regression.

Sep 15, 2008 | PHP Developer Best Practices

Unit Testing

• Change the method to make it work properly by only
accepting valid strings.

• Write a test to assert that its new behavior meets
your expectations.

What else could go wrong here?

Sep 15, 2008 | PHP Developer Best Practices

Unit Testing

• Concise documentation
that can be understood by
a non-technical person

• Only as good as the names
of your tests

Sep 15, 2008 | PHP Developer Best Practices

Test Driven Development

• Write the tests first.

• First make a test that fails because a new behavior
does not yet exist. (go red)

• Write the code to make the test pass. (get to green)

• Refactor and repeat.

• Avoid dogma. Find what finds your brain the best. Try
to test first or test during. Try not to test too late.

Sep 15, 2008 | PHP Developer Best Practices

PHPUnit Configuration

Sep 15, 2008 | PHP Developer Best Practices

PHPUnit Code Coverage

Class-level Analysis

Sep 15, 2008 | PHP Developer Best Practices

PHPUnit Code Coverage

Method-level Analysis

Sep 15, 2008 | PHP Developer Best Practices

Continuous Integration

http://phpundercontrol.org

http://phpundercontrol.org
http://phpundercontrol.org

Sep 15, 2008 | PHP Developer Best Practices

Unit Testing

• Learning to write good object oriented code that is
easily testable takes practice and discipline.

• Wrapping your functions in classes is not the same as
object oriented design.

• A great deal of PHP code is extremely difficult to test
due to poor design. Learn to design for testability.

• Increase your confidence in changes. Your tests will
fail if you break something.

Sep 15, 2008 | PHP Developer Best Practices

Integration and Acceptance Testing

Sep 15, 2008 | PHP Developer Best Practices

Selenium RC

• Unit testing is often not enough

• Selenium RC is a Browser-based testing tool

• Launches a web browser

• Retrieves URL

• Inspects Results

• PHPUnit integration is simple to use

Sep 15, 2008 | PHP Developer Best Practices

Selenium RC

• Download and install Selenium server

• Launch Selenium server on command line

• Run PHPUnit tests utilizing Selenium

• Shut down Selenium server

Sep 15, 2008 | PHP Developer Best Practices

Example Selenium Test

• Retrieve a web page and test its contents
• Notice the page can be hosted anywhere
• You can test any web application, PHP or not.

Sep 15, 2008 | PHP Developer Best Practices

Selenium Assertions

• Fairly rich assertion vocabulary with specific assertions
like assertTitleEquals()

• General purpose element assertions like
assertElementPresent() take $locator

• Element locators can be a many formats, e.g. XPath.

Sep 15, 2008 | PHP Developer Best Practices

Selenium Assertions

• Locators can be CSS selectors

• You can use $locator with CSS selectors to keep your
tests similar to your CSS and JavaScript.

Sep 15, 2008 | PHP Developer Best Practices

Documentation

Sep 15, 2008 | PHP Developer Best Practices

Documentation

• Common types of technical documentation:

• Agile Documentation
� Test Cases
� TestDox

• Source Documentation
� Doxygen
� phpDocumentor

• End User Documentation
� DocBook

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

• phpDocumentor: http://phpdoc.org

• Uses annotation tags in source comments very similar
to JavaDoc

• phpDocumentor tags are the most used standard for
generating documentation from PHP source. They
even have their own token assigned to them in the
PHP parser itself.

http://phpdoc.org
http://phpdoc.org

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

• Other documentation generators like Doxygen already
support phpdoc tags. Don’t invent your own tags!

• Supported by a number of different IDEs.
Zend Studio is perhaps the most prevalent.

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

Completely Undocumented

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

• Document all source
elements

• Files, classes, methods,
variables

• Annotate with
comments, type hints,
and other useful data

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

• Utilize @category, @package, @subpackage.
Documentation systems use these tags to organize the
generated documentation.

• Prefix your classes. Easier to browse, prevent top-
level name collisions, easier to mix other libraries.

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

• Thoughtful comments, types, throws, etc.
• Actually reflect the source code (comments can lie)

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

• Some IDEs will parse phpdoc
tags to infer information
about the source

• Properly document
parameters and return
values

• Experience for IDE users can
be greatly enhanced

• Documentation for other
users is also improved

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

• Some libraries and frameworks reflect on phpdoc tags
for various kinds of automation.

• Zend_XmlRpc_Server
• @param to provide and enforce parameter type hints
• @return to provide method signatures
• Text in the comment for method help

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

Automatically generated documentation (phpDocumentor)

Sep 15, 2008 | PHP Developer Best Practices

DocBook: End User Documentation

• DocBook is an XML format that you can use to write
end user documentation for your libraries or products

• Powers the php.net manual and a large number of
other open source projects

• Used by publishers like O’Reilly and Pragmatic

• Output to a variety of formats: HTML, PDF, CHM
(Windows Help), and more.

Sep 15, 2008 | PHP Developer Best Practices

DocBook: End User Documentation

• Advanced editors are available but not required

• Docbook is a simple format that is relatively easy to
learn and use

• Free toolchain runs on *nix or Cygwin

• XML means it can be manipulated by anything that can
parse XML, like PHP itself.

Sep 15, 2008 | PHP Developer Best Practices

DocBook Example

Sep 15, 2008 | PHP Developer Best Practices

DocBook Example

Sep 15, 2008 | PHP Developer Best Practices

Documentation Summary

• Write API Documentation
• phpdoc
• Document all source elements
• Write meaningful inline documentation
• Organize using @category, @package, @subpackage

• Write End User Documentation
• DocBook
• HTML output, experiment with others

Sep 15, 2008 | PHP Developer Best Practices

Deployment

Sep 15, 2008 | PHP Developer Best Practices

Deployment Tips

• Never edit files on a production server!

• Deploy from repository tags.

• Don’t go from Development to Production. Use a
Staging environment to mimic Production.

• Establish a formal release procedure.

Sep 15, 2008 | PHP Developer Best Practices

Deployment Tips

• Instead of overwriting files on the web server, use a
symlink. After the new deployment is installed, switch
the symlink to point to it. If anything goes wrong, just
switch the symlink back to the old version.

• Don’t manually interact with the Production server in
any way. Write scripts to build and deploy the
application without human intervention after starting.
Increase repeatability, decrease mistakes.

Sep 15, 2008 | PHP Developer Best Practices

Deployment Tips

• Write acceptance and integration tests for your
application that run on deployment.

• Investigate open source deployment tools to help
further automate the process.

• Use server management tools like Monit and
Supervisord to keep watch over your deployment.

• Continue to run your tests periodically on a scheduler
to detect failures.

Sep 15, 2008 | PHP Developer Best Practices

Deployment Process Example

• Update QA server from production branch, run tests,
get client acceptance

• Tag production branch

• Export from the tag, roll code to the staging server

• Run tests on the staging server as a sanity check

• Deploy to the production server

Sep 15, 2008 | PHP Developer Best Practices

Questions?

Sep 15, 2008 | PHP Developer Best Practices

Thanks!

Mike Naberezny
mike@maintainable.com

Matthew Weier O’Phinney
matthew@zend.com

mailto:mike@maintainable.com
mailto:mike@maintainable.com
mailto:matthew@zend.com
mailto:matthew@zend.com

