PHP DEVELOPER
BEST PRACTICES

Mike Naberezny
Matthew Weier O’Phinney

ZEND/ PHP CONFERENCE 15-18 SEPTEMBER 2008

Mike Naberezny

http://mikenaberezny.com
http://maintainable.com
http://ohloh.net/accounts/mnaberez

éMHKE

NABEBRIBZINN

ZendCon ‘06 ZendCon ‘07

http://mikenaberezny.com
http://mikenaberezny.com
http://maintainable.com
http://maintainable.com
http://ohloh.net/accounts/mnaberez
http://ohloh.net/accounts/mnaberez

Matthew Weier O’Phinney

http://weierophinney.net/matthew
http://framework.zend.com
http://ohloh.net/accounts/weierophinney

Matthew

MLATPTTH BV Weier O'Phinney

5

o WEIER
O'PRINNEY

ZendCon ‘06 ZendCon ‘07

http://weierophinney.net/matthew
http://weierophinney.net/matthew
http://framework.zend.com
http://framework.zend.com
http://ohloh.net/accounts/15780
http://ohloh.net/accounts/15780

About You

Web developer, using PHP

Is your code well organized and maintainable?
Are you using source control?

Is your software documented?

Do you have automated tests for your software?

Agenda

Today we will present ideas and techniques that you
can use to improve your development process.

Not every technique can apply to every project.
Start small; implement a few new practices at a time.

Find what works for your team and iterate on that.

Use this talk as a starting point to go off and learn more.

Agenda

Source Control

Coding Standards
Testing
Documentation
Deployment

Q&A

Source Control

Source Control

Problems Source Control Solve
How do | know if somebody did something?

How do others know | did something?
How do | get my updates from others?
How do | push my updates out to others?

Do we have the old version?

What changed?

Source Control

General types of source control:

Distributed

Non-Distributed

Distributed Source Control

Methodology
Developers work directly on local copies or branches
Changes are shared between repositories and/or developers

Benefits
No server necessary

Typically very space efficient
A git version of a Subversion repository may be 90% smaller

Fork a project locally while keeping it synced with the master

Distributed Source Control

Issues
“Master” repository is by convention
Which is the canonical version?
Harder to automate process based on commits

Examples
Git
Developed for, and used by, Linux kernel development
Gaining popularity with web developers (c.f. github.com)
GNU Arch
Developed for tracking kernel development
Darcs
“Theory of patches”
Considered more “pure” implementation, small adoption

Distributed Source Control

Useful Git commands

Create a branch on the fly and switch to it
git branch branchname

Switch to a branch
git checkout branchname

“Cherry-pick” commits to apply from the past hour
git cherry-pick branchname@{1l hour ago}

Create a source tarball of a given tag

git archive --format=tar --prefix projname-
TAGNAME/TAGNAME | gzip - > projectname.tar.gz

Non-Distributed Source Control

Methodology
Developers work on local checkouts or working directories
Changesets are checked in- and out- of a central repository

Benefits
Canonical repository
Easy to automate processes based on commits

Non-Distributed Source Control

Issues
Server is necessary
Single point of failure
Branching is more difficult
Limited offline functionality

Examples
CVS: Concurrent Versions System
Subversion (SVN): A compelling replacement for CVS

Non-Distributed Source Control

Typical Workflow:
Get an initial checkout of the code
Make code changes
Commit changes to the repository

Update to latest change from repository

Repeat

Subversion

Functions like a superset of CVS

Easily move files between directories while preserving history
Simplified process of tagging and branching
Transactions for when things go wrong

Extensible and supported by excellent tools
Popular with many open source projects
Integrate with other projects with svn:externals
Migrate existing CVS repositories with cvs2svn

Subversion Repository Layout

project/

trunk/

tags/
release-1.0/
release-1.1/

branches/
production/
version-1.0/
version-1.1/

Subversion Repository Layout

Use the trunk/ for ongoing development

Use branches/ for maintained releases

Production branch: merge changes from development when
stable enough for production

Release branches:
Merge in security or bug fixes from trunk
Create tags when releasing bug fixed versions

Use tags/ for release/rollout snapshots

Subversion Externals

Use svn:externals to connect remote repositories

Seamlessly merge your dependencies

Track against anything in the remote repository: trunk, tags,
or even a specific revision

Pulls code from the remote repository each time you do a
checkout or update

Subversion Externals

svn propedit svn:externals .

In your editor:
directory [-r##] http://remote-svn-repository/path/

Example (latest revision of trunk/):

framework http://framework.maintinable.com/svn/
framework/trunk/

Example (specific revision of trunk/):
framework -r50 http://framework.maintinable.com/svn/
framework/trunk/

http://remote-svn-repository
http://remote-svn-repository
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk
http://framework.maintinable.com/svn/framework/trunk

Subversion Hooks

Allow you to observe and interrupt the commit process

Implemented as shell scripts on the repository server
under the repository’s hooks/ directory.

Hook scripts can be any language (PHP, Ruby, Python,
Tcl, shell...) as long as executable & named properly

Example hooks:
start-commit, pre-commit, post-commit

Subversion Hooks

Useful Subversion Commit Hooks

Pre-Commit:
Reject changes that do not pass lint (php -l)
Reject changes that violate coding standards (PHP_CodeSniffer)

Post-Commit:

Send email notification of the change to developers
Run unit tests and send email on failure
Rebuild DocBook documentation

Update tickets on Trac or other issue tracker

Source Control Summary

Source control systems are necessary

As a history of changes to your project
To prevent developer change conflicts

Subversion has many benefits
Wide adoption

Improved features over CVS

Integrate remote repositories with svn:externals
Hooks for extending its capabilities

Distributed source control systems are rapidly
gaining popularity and worth a look.

Coding Standards

Why use coding standards?

Focus on code, not formatting
Consistency
Readability

Collaboration

Maintenance

What should coding standards provide?

File, class, variable naming conventions

Code formatting conventions

Guidelines for consistency across the code

Uniformity

Learn from Others

Don’t invent your own standard. All of the issues have
already been debated to death by many others.

Use an established standard
Minimize politics by choosing an external standard
Choose a standard compatible with the libraries you use
Use the standard as a requirement when outsourcing

Stick to the standard you establish, don’t mix

PEAR-like Coding Standards

Originated with the Horde Project

Well known, more accepted than any other

Basis for many open source projects
Horde
Solar Framework
PEAR
Zend Framework

Files and Directories

Class name used to name file
.php extension

Class name underscores convert to directory
separator:
Spreadsheet_Excel_Writer
Spreadsheet/Excel/Writer.php

One class per file, no loose code

Naming Conventions

Class names are MixedCase
Method names are camelCase

Constants are ALL_CAPS

Properties and variables are camelCase

Non-public class members are _underscorePrefixed

Source Formatting

One True Brace

Functions and Classes have the opening brace on the line
following the declaration, at the same indentation level

Control Structures keep the opening brace on the same line as
the declaration

Indentation
Spaces only; no tabs
Four (4) spaces per level of indentation
Purpose is consistency of viewing

Aside: Design Patterns

What are design patterns? Why use them?
Reusable ideas, not code

Proven solutions to common design problems

Better communication through shared vocabulary

Aside: Design Patterns

| need to notify other objects when an interesting
event occurs in the system: Observer

| need only a single instance of this object to be
accessed during this HTTP request: Singleton

| need to modify the output of an object or change its
external interface: Decorator

Example

<?php

» All control structures use
. extends braces; no one liners

const BAZ = 0;

public $foo;
» Keep lines 75-85 characters
in length, maximum

private $_bar;

public function ($name)
{
if ($name == 'Matthew Weier O\'Phinney') {
$greeting = "Hello, MWOP!";
} else { » No shell-style comments (#)
$greeting = "Hello, $name!";
}

return $greeting;

Sep 15, 2008 | PHP Developer Best Practices

Enforcing Coding Standards

% /usr/local/zend/bin/phpcs --standard=Zend --extensions=php .

FILE: /home/matthew/git/paste/application/models/Paste.php

| WARNING | Line exceeds 80 characters; contains 94 characters
| WARNING | Line exceeds 80 characters; contains 92 characters
99 | WARNING | Line exceeds 80 characters; contains 94 characters
| WARNING | Line exceeds 80 characters; contains 93 characters
| WARNING | Line exceeds 80 characters; contains 94 characters

» Automatically check your code against several common
standards or teach it your own standard
» http://pear.php.net/package/PHP_CodeSniffer

Sep 15, 2008 | PHP Developer Best Practices

http://pear.php.net/package/PHP_CodeSniffer
http://pear.php.net/package/PHP_CodeSniffer

Coding Standards Summary

Adopt a coding standard in your organization

Use an existing coding standard that plays well with the
libraries that you use

Enforce usage of the standard

Learn and use design patterns as part of your
development team’s vocabulary

Unit Testing

Unit Testing

Untested code can be fragile and prone to regression.

No time to write tests? Start writing tests instead of
reloading your browser and doing senseless debugging.
Increase your productivity and product quality.

Start by testing the most critical aspects of your code,
strive for testing all of your code. Be practical.

PHPUnNit (http://phpunit.de) is one of the most
feature-rich and widely-used testing frameworks.

http://phpunit.de
http://phpunit.de

Unit Testing

<?php
class
{
private $_name = 'John Doe';
public function me($name)
{
if (empty($name)) {
throw new IllegalArgumentException();
}
$this->_name = $name;
}
public function lame()
{
return $this->_name;
}

Sep 15, 2008 | PHP Developer Best Practices

Class representing a
person

Until named otherwise,
the person has a
default name.

The name can be
changed.

The new name cannot
be empty.

Unit Testing

<?php

class extends

{
public function O

{

$p = new Person();
$this->assertEquals('John Doe', $p->getName());

}

public function @)
{

$p = new Person();

$newName = "Matthew Weier 0'Phinney";

$this->assertNotEquals($newName, $p->getName());
$p->setName($newName);

$this->assertEquals($newName, $p->getName());
}
public function O
{

$p = new Person();

try {

$p->setName('');
} catch (IllegalArgumentException $e) {
return;
}
$this->fail();
}
}

Sep 15, 2008 | PHP Developer Best Practices

Each test examines a
discrete behavior or
“unit” of functionality of
the Person object.

Each test asserts that the
behavior of the object
meets our expectations.

If a code change breaks
the behavior, the tests will
fail and show the
regression.

Unit Testing

What else could go wrong here?

public function ($name)

{
if (empty($name)) {
throw new IllegalArgumentException();
}

$this->_name = $name;

Change the method to make it work properly by only
accepting valid strings.

Write a test to assert that its new behavior meets
your expectations.

<?php

class PersonTest extends PHPUnit_Framework_TestCase
{
public function testNameIsInitiallyJohnDoe()
{
$p = new Person();
$this->assertEquals('John Doe', $p->getName());
}

public function testNameCanBeChanged()

{
$p = new Person();
$newName = "Matthew Weier O'Phinney";
$this->assertNotEquals($newName, $p->getName());
$p->setName($newName);
$this->assertEquals($newName, $p->getName());

}

public function testNameCannotBeEmpty()
{
$p = new Person();
try {
$p->setName('");
} catch (IllegalArgumentException $e) {
return;
}
$this->failQ);
}
}

$ phpunit --testdox PersonTest

PHPUnit 3.2.10 by Sebastian Bergmann.

Person

- name is initially john doe
- name can be changed

- name cannot be empty

Test Driven Development

Write the tests first.

First make a test that fails because a new behavior
does not yet exist. (go red)

Write the code to make the test pass. (get to green)

Refactor and repeat.

Avoid dogma. Find what finds your brain the best. Try
to test first or test during. Try not to test too late.

<phpunit>
<testsuite name="Pastebin Test Suite">
<directory>./</directory>
</testsuite>

<php>
<!-- <ini name="include_path" value="../library"/> -->
</php>

<filter>
<whitelist>
<directory suffix=".php">../library/</directory>
<directory suffix=".php">../application/</directory>
<exclude>
<directory suffix=".phtml">../application/</directory>
</exclude>
</whitelist>
</filter>

<logging>
<log type="coverage-html" target="./log/report" charset="UTF-8"
yui="true" highlight="true"
lowUpperBound="50" highLowerBound="80"/>
<log type="testdox-html" target="./log/testdox.html" />
</logging>
</phpunit>

PHPUnit Code Coverage

Coverage
Classes Methods Lines

Total 1 10000% 1/1 [—1 10000% 8/8 [1 100.00% B88/88
aste [] 10000% 1/1 [C——7 10000% ©&/8 [——1 100.00% 88/88
public function add(array $data) 1 10000% 1/1 [C—17 10000% 12/12
public function get($id) 1 10000% 1/1 [C——1 100.00% 16/16

public functi fetchActive(y
c‘,{it;iia”’fo,ﬁﬂ 2lchactiveiarrg 100.00% 1/1 100.00% 10/10

public function fetchActiveCount() 100.00% 1/1 100.00% 117
public function getForm() 100.00% 1/1 100.00% 515
public function getTable() 100.00% 1/1 100.00% 515
protected function _getChildren($id) 100.00% 1/1 100.00% 6/6

protected function
refineSelection(Zend Db_Select $select 100.00% 1/1 100.00% 27/27

array $criteria

Class-level Analysis

Sep 15, 2008 | PHP Developer Best Practices

PHPUNit Code Coverage

t

Add a paste

t
t
t
t
t

@param array $data
@return string
t

public function add(array $data)
{
$form = $this->getForm();

$belongTo = $form->getElementsBelongTo();
if (!empty($belongTo) && array_key exists($belongTo, $data)) {
$data = $datal$belongTol;

if (!$form->isValid(gdata)) {
return false;
}

$values = $form->getvalues();
if (lempty($belongTo)) {

$values = $values[$belongTol;
}

return $this->getTable()=->insert($values);

Method-level Analysis

Sep 15, 2008 | PHP Developer Best Practices

Continuous Integration

& & 8 £ | @ nttp:/192.168.13.13:8080/buildresults/phpUnderControl?tab=metrics B o
Project: Bulid: ~
phpUnderContr phoUndercontral =
Overview | Tests [0 Log Fe etrics Coverage | Documertation | CodeSniffer | PHPUREPMD |

Project Metric Summary
ot Buitd Attempls

Breakdown of build timeline Unit coverage

[fuine

et

Unit Tests

http://phpundercontrol.org

http://phpundercontrol.org
http://phpundercontrol.org

Unit Testing

Learning to write good object oriented code that is
easily testable takes practice and discipline.

Wrapping your functions in classes is not the same as
object oriented design.

A great deal of PHP code is extremely difficult to test
due to poor design. Learn to design for testability.

Increase your confidence in changes. Your tests will
fail if you break something.

Integration and Acceptance Testing

Selenium RC

Unit testing is often not enough

Selenium RC is a Browser-based testing tool
Launches a web browser
Retrieves URL

Inspects Results

PHPUnNit integration is simple to use

Selenium RC

Download and install Selenium server
Launch Selenium server on command line

Run PHPUnit tests utilizing Selenium

Shut down Selenium server

Example Selenium Test

class extends

i
protected function (@]
{

$this->setBrowser('*firefox');
$this->setBrowserUrl('http://www.example.com/"');

}
public function O
{
$this->open('http://www.example.com/");
$this->assertTitleEquals('Example Web Page');
}

}

» Retrieve a web page and test its contents
» Notice the page can be hosted anywhere
» You can test any web application, PHP or not.

Sep 15, 2008 | PHP Developer Best Practices

Selenium Assertions

Fairly rich assertion vocabulary with specific assertions
like assertTitleEquals()

General purpose element assertions like
assertElementPresent() take Slocator

Element locators can be a many formats, e.g. XPath.

Selenium Assertions

public function O
{

$this->open('http://www.example.com/"');
$this->assertElementValueEquals('css=title"', "Example Web Page');

Locators can be CSS selectors

You can use Slocator with CSS selectors to keep your
tests similar to your CSS and JavaScript.

Documentation

Documentation

Common types of technical documentation:

Agile Documentation
Test Cases
TestDox

Source Documentation
Doxygen
phpDocumentor

End User Documentation
DocBook

Source Documentation

phpDocumentor: http://phpdoc.org

Uses annotation tags in source comments very similar
to JavaDoc

phpDocumentor tags are the most used standard for
generating documentation from PHP source. They
even have their own token assigned to them in the
PHP parser itself.

http://phpdoc.org
http://phpdoc.org

Source Documentation

Other documentation generators like Doxygen already
support phpdoc tags. Don’t invent your own tags!

Supported by a number of different IDEs.
Zend Studio is perhaps the most prevalent.

Source Documentation

<?php
class extends
{
protected $_rootElement = 'item';
}

Completely Undocumented

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

Document all source <2php
elements
. @uses
Files, classes, methods, : -
variables {
@var
AnnOtate W]th protected $_rootElement = 'item';

comments, type hints, ?
and other useful data

Sep 15, 2008 | PHP Developer Best Practices

Source Documentation

@category
@package
@copyright
@license

class : extends

{

Utilize @category, @package, @subpackage.
Documentation systems use these tags to organize the
generated documentation.

Prefix your classes. Easier to browse, prevent top-
level name collisions, easier to mix other libraries.

Sep 15, 2008 | PHP Developer Best Practices

Vb

}

* Fasy access to <link> tags keyed by "rel" attributes

*

* If link() is called with no arguments, returns an array containing

* the values of all <link> tags. If $rel is passed, returns the "href"

* value of the first <link> tag that has a "rel" attribute matching $rel.
*

* @aram string The "rel" attribute to match (optional)
* @return arrayl/string

&/

public function link(S$rel = null)

{

Source Documentation

< 2php

class Zend Bar

{

public function sayHella()

1l
'

class Zend Foo

!

3ok
SN

* @return Zend Bar

-)
Lo

public atatic funcrion getBari()

i)
;

fhar = Zend Foo::getBari():
fhar-»

&, Zend=Bar: r2ayHello() woid
L L o

Location: Chexample.php
class Zend Bar

public function sayHello)

Some IDEs will parse phpdoc
tags to infer information
about the source

Properly document
parameters and return
values

Experience for IDE users can
be greatly enhanced

Documentation for other
users is also improved

Source Documentation

Some libraries and frameworks reflect on phpdoc tags
for various kinds of automation.

Zend_XmlRpc_Server
@param to provide and enforce parameter type hints
@return to provide method signatures
Text in the comment for method help

Source Documentation

Zend_Feed

@ Zend _Feed
@) To-do List
3) Class trees
2) Index of elements
{31 Interface(s)
=-{] Class(es)
Zend_Feed
Il Zend_Feed _Abstract
Zend_Feed_Atom
Zend_Feed_Element
Zend _Feed _EntryAbstract

Zend_Feed_Rss
=] File(s)

) Abstract.pho

] Atom.php

) Element.php

) EntryAbstract.php

) EntryAtom.php

) EntryRss.php

) Exception.php

) Feed.php

) Rss.php

Generated by phpDocumentor
1.3.0RC6

Cenerated Documentation

Zen

Packages Zend_Feed

.l Zend_Feed_EntryRss

| Vars (details) | Methods

Concrete class for working with RSS items.

= license: New BSD License
= copyright: Copyright (c) 2006 Zend Technologies USA Inc. (http://www.zend.com)

Located in /Zend/Feed/EntryRss.php (iine 34)
Zend_Feed_Element
--Zend_Feed_EntryAbstract

I
--Zend_Feed_EntryRss

Description | V (details) | Methods

-~
-/ string $_rootElement

Description | ¥ | Methods

%) string $_rootElement = ‘item’ (line 41)
Root XML element for RSS items.

= access: protected

d
A

Automatically generated documentation

DocBook: End User Documentation

DocBook is an XML format that you can use to write
end user documentation for your libraries or products

Powers the php.net manual and a large number of
other open source projects

Used by publishers like O’Reilly and Pragmatic

Output to a variety of formats: HTML, PDF, CHM
(Windows Help), and more.

DocBook: End User Documentation

Advanced editors are available but not required

Docbook is a simple format that is relatively easy to
learn and use

Free toolchain runs on *nix or Cygwin

XML means it can be manipulated by anything that can
parse XML, like PHP itself.

<example id="zend.controller.actionhelper.redirector.basicusage.example-4">
<title>Using route assembly with gotoRoute()</title>

<para>
The following example uses the <link
linkend="zend. controller.router">router's</link>
<code>assemble()</code> method to create a URL based on an
associative array of parameters passed. It assumes the following
route has been registered:
</para>

<programlisting role="php"><![CDATA[
$route = new Zend_Controller_Router_Route(
'blog/:year/:month/:day/:id",
array('controller' => 'archive',
'module' => 'blog',
'action' => 'view')
DK
$router->addRoute('blogArchive', $route);
11>
</programlisting>

DocBook Example

000 Zend Framework: Documentation
@ Z= http:/ /framework.zend.com/manual/en/zend.controller.actionhelp ~ Q~ Coogle

Example 8.9. Using route assembly with gotoRoute()

The following example uses the router's assemble () method to create a URL based on an
associative array of parameters passed. It assumes the following route has been registered:

$route = new Zend_Controller Router Route(
'blog/:year/:month/:day/:id’,
array('controller' => 'archive',
'module’ => 'blog’,
'action' => 'view')
)i
$router->addRoute('blogArchive’', $route);

Given an array with year set to 2006, month to 4, day to 24, and id to 42, it would then build the
URL /blog/2006/4/24/42.

Documentation Summary

Write APl Documentation
phpdoc
Document all source elements
Write meaningful inline documentation

Organize using @category, @package, @subpackage

Write End User Documentation

DocBook
HTML output, experiment with others

Deployment

Deployment Tips

Never edit files on a production server!
Deploy from repository tags.

Don’t go from Development to Production. Use a
Staging environment to mimic Production.

Establish a formal release procedure.

Deployment Tips

Instead of overwriting files on the web server, use a
symlink. After the new deployment is installed, switch
the symlink to point to it. If anything goes wrong, just
switch the symlink back to the old version.

Don’t manually interact with the Production server in
any way. Write scripts to build and deploy the
application without human intervention after starting.
Increase repeatability, decrease mistakes.

Deployment Tips

Write acceptance and integration tests for your
application that run on deployment.

Investigate open source deployment tools to help
further automate the process.

Use server management tools like Monit and
Supervisord to keep watch over your deployment.

Continue to run your tests periodically on a scheduler
to detect failures.

Deployment Process Example

Update QA server from production branch, run tests,
get client acceptance

Tag production branch
Export from the tag, roll code to the staging server

Run tests on the staging server as a sanity check

Deploy to the production server

Questions?

Thanks!

Mike Naberezny
mike@maintainable.com

" Matthew Weier O’Phinney

T3

. matthew®@zend.com

mailto:mike@maintainable.com
mailto:mike@maintainable.com
mailto:matthew@zend.com
mailto:matthew@zend.com

