
Supervisor as a Platform

Chris McDonough, Agendaless Consulting
Mike Naberezny, Maintainable Software

http://supervisord.org

PyCon Chicago, March 2008

http://supervisord.org
http://supervisord.org

• Quickly learn the basics of
Supervisor and how to get it up
& running.

• Explore the advantages of writing
programs which take advantage
of Supervisor’s capabilities.

Goals

Agenda

• Supervisor Basics

• Remote Control via XML-RPC

•XML-RPC Interface Extensions

• Event Notification System

•Q&A

Supervisor Basics

Supervisor Basics
• Supervisor is a Python program that

allows you to start, stop, and restart
other programs on UNIX systems. It can
restart crashed processes. Built on
Medusa.

• Comparable programs: daemontools,
launchd, runit.

• Not focused on replacing init as "pid
1". Ad-hoc projects and extensibility.

Supervisor Components
• supervisord is the daemon

program. Runs arbitrary programs as
child processes.

• supervisorctl is a client program.
Control state of supervisord
children and view logs.

• Web interface: start, stop, restart, view
logs.

Supervisor Config File
[inet_http_server]
port=127.0.0.1:9001

[supervisord]
logfile=/tmp/supervisord.log

[program:cat]
command=/bin/cat
autostart=True

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = ...

Security
• By default, users cannot start

arbitrary processes. They can
manage predefined processes.

• Password auth can be configured for
through-the-web manipulation (XML-
RPC and web interface).

• UNIX sockets can be used rather than
TCP sockets (or both at the same
time).

Demo: Starting
Supervisord &
Supervisorctl

Remote Control
via XML-RPC

XML-RPC Interfaces
• Supervisor operations are scriptable via

XML-RPC.

• supervisorctl communicates with
supervisord using XML-RPC.

• supervisor.startProcess(),
supervisor.stopProcess(),
supervisor.readProcessLog()

Example:
Inspecting a Process

>>> import xmlrpclib
>>> s = xmlrpclib.ServerProxy(
 'http://localhost:9001')
>>> s.supervisor.getProcessInfo(‘cat’)

[{'statename': 'RUNNING',
 'group': 'cat',
 'name': 'cat',
 'stop': 0,
 'stderr_logfile': ...
}]

http://localhost:9001
http://localhost:9001

Example:
Stopping a Process

>>> import xmlrpclib
>>> s = xmlrpclib.ServerProxy(
 'http://localhost:9001')
>>> s.supervisor.stopProcess('cat')

True

http://localhost:9001
http://localhost:9001

XML-RPC Namespaces

• Supervisor’s XML-RPC interface is divided into
namespaces: built-in or your extensions

• Built-in Namespaces

• supervisor namespace has all of the core
functions for controlling processes.

• system namespace has introspection
functions. Try system.listMethods()

Extending the
XML-RPC Interface

Extending Supervisor With
New RPC Interfaces

• RPC interface 'namespace interfaces' may
be plugged in to Supervisor.

• Arbitrary functionality may be added.

• Functionality usually "meta-process"

• Code can be difficult to write because it
cannot block.

Registering a Namespace
In the supervisord.conf configuration file:

[rpcinterface:thenamespace]
supervisor.rpcinterface_factory = <callable>
a_config_option = foo
another_config_option = bar

The <callable> is a factory that returns your
custom RPC namespace instance.

Async Means No Blocking!

• Supervisor is single-threaded. Methods of
custom RPC interfaces cannot block.

• NOT_DONE_YET sentinel allows
functions that would block to be called
periodically until they are done working.

• Example: supervisor.rpcinterface's
SupervisorNamespaceRPCInterface class'
stopProcess() method.

Extensions Available
• supervisor_twiddler

• Manipulate Supervisor’s program definitions in
arbitrary ways without restarting

• Probably not for high security environments

• supervisor_cache

• Store data in Supervisor as key/value pairs

• Good starting point - very simple extension

Event Notification
System

Supervisor Events

• Events happen as supervisor runs
normally.

• Supervisor itself defines all event types,
e.g. PROCESS_STATE_CHANGE, when a
process changes its state.

• All important state changes of Supervisor
and its processes are fired as events.

Event Listeners

• An event listener is a process that runs
under Supervisor.

• This process can be written in any
language. Communication with Supervisor
is a simple text protocol.

• A module (childutils) is packaged with
Supervisor to help writing these in Python.

Event Listener Config

In the supervisord.conf configuration file:

[eventlistener:listen_for_proc_state_change]
command=/bin/on_state_change
process_name=%(program_name)s_%(process_num)02d
numprocs=5
events=PROCESS_STATE_CHANGE

The event listener can subscribe to any or all
of the Supervisor event types.

Event Listener Sample

import os
from supervisor import childutils

def main():
 while 1:
 headers, payload = childutils.listener.wait()
 ename = headers['eventname']
 if ename.startswith('PROCESS_COMMUNICATION'):
 pheaders, pdata = \
 childutils.eventdata(payload)
 print pheaders, pdata
 childutils.listener.ok()

Python example, using childutils helper module:

Practical Uses

• Monitor subprocess memory usage and kill
off or restart a process consuming "too
much" memory.

• Provision new instances of programs "on
the fly" based on usage statistics.

• Bidirectional communications between
"normal" supervisor-managed processes
and event listener processes.

Thanks!

• Supervisor & Extensions

• http://supervisord.org

• http://maintainable.com/software

• Contact Us

• chrism@agendaless.com

• mike@maintainable.com

http://plope.com/software/supervisor2
http://plope.com/software/supervisor2
http://maintainable.com/software
http://maintainable.com/software
mailto:chrism@agendaless.com
mailto:chrism@agendaless.com
mailto:mike@maintainable.com
mailto:mike@maintainable.com

