
Py65: Microcontroller
Simulation with Python

PyWorks 2008
Mike Naberezny

About Me

• http://mikenaberezny.com

• http://maintainable.com

• http://ohloh.net/accounts/mnaberez

http://mikenaberezny.com
http://mikenaberezny.com
http://maintainable.com
http://maintainable.com
http://ohloh.net/accounts/mnaberez
http://ohloh.net/accounts/mnaberez

About Me

• http://6502.org

• Over 10 years online

• Gigabytes of 6502
technical information

http://6502.org
http://6502.org

About Py65

• Simulation of 65xx family hardware
components as Python objects

• Very new project: started July 2008

• Target audience

• Engineers working on embedded software

• Students learning how computers work

About Py65

• Very low-level simulation

• Even this can be easier than dealing with the
real hardware

Today’s Talk

• 6502 Yesterday & Today

• Building & Programming

• Py65 Simulator Overview

• Simulation Demo

• Q&A

History

• MOS Technology
released one of the
early microprocessors
in the mid 1970’s.

• It was well designed.

• It was a fraction of the
cost of its competitors.

• At this time, there were
no home computers.

• Microprocessors made
home computers possible.

• The 6502 made affordable
home computers possible.

• With a 6502 and a few
support chips, a simple
computer could be made.

• People began building
their own computers.

• Trainer boards like the
KIM-1, SYM-1, and
AIM-65 became popular.

• Self-built computers and
trainers proliferated.

• They were too technical
for the average person.

• Pre-built computers like
the Commodore PET and
Apple II made computers
accessible to everyone.

By the early 1980’s, 6502-based computers were
everywhere. The personal computer revolution had begun.

• Commodore PET, VIC-20, 64, 128...

• Apple I, II, II+, IIe, IIc, ...

• Atari 2600, 7800, 400, 800, ...

• Nintendo NES (’02), SuperNES (‘816)

• Countless others, late-70’s to mid-80’s

6502 Domination

Embedded

• Around the mid 1980’s, 16-bit home computers
began to take over the market.

• 6502-based technology was produced in huge
quantities and more affordable than ever.

• 6502 applications shifted to games, embedded
devices, and industrial control applications.

30+ Years of 6502

The legendary 65xx brand microprocessors with both 8-bit and 8/16-bit ISA’s keep
cranking out the unit volumes in ASIC and standard microcontroller forms
supplied by WDC and WDC’s licensees.

Annual volumes in the hundreds (100’s) of millions of units keep adding in a
significant way to the estimated shipped volumes of five (5) to ten (10) billion
units.

With 200MHz+ 8-bit W65C02S and 100MHz+ 8/16-bit W65C816S processors
coming on line in ASIC and FPGA forms, we see these annual volumes continuing
for a long, long time.

- Western Design Center, Inc.

Building a
Small Computer

6502 System

• Single 64K Address Space ($0000-$FFFF)

• RAM, ROM, I/O are all mapped into this space

• Address Lines select the address

• Data Lines hold data to read/write at the address

• Clock, RESET, decoding, other glue makes a system

6502 System

6502 System

• MPU

• Clock

• Glue Logic

• ROM

• RAM

• I/O Devices

Each device is an object in Py65.

• Expandable, Reconfigurable

• Add or remove components, rewire

• Larger, more difficult to assemble

• Observable

• Address, data, and control lines are all
accessible with logic probe or oscilloscope

Microcomputer

Microcontroller

• Components combined
into one package

• Usually fixed memory map

• Smaller, less power, etc.

• Software compatibility
(same 6502 MPU core)

• Fixed configuration

• Typically not expandable

• Smaller package, less to assemble

• Less Observable

• Connections between internal components
cannot observed (need for simulation)

Microcontroller

Programming a
Small Computer

• Assembler?!

• For microcontrollers and very small
computers, assembly language is still relevant
and often necessary

Assembly Language

Assembly Language

Problems

• Assembling even small boards is time
consuming and takes some skill

• Software is developed on a PC and then
downloaded into the target device

• It takes time and manual steps to download
the software into the target and test it

Problems

• The software you write will often have issues
during development

• Debugging these problems is difficult... often a
controller hangs with no other clues as to
what happened

• Software tested manually is prone to regress

Problems

• We want faster development time for very
low-level software, usually assembly language.

• We want a way to test our system designs
before committing to the hardware.

• We want a way to prove our software works
and will continue to work when changed.

Simulation

Simulation

• Mimic the function of the hardware in a
software system on a PC workstation

• Test software without downloading it into the
target machine

• Allows the greatest visibility into the system

Typical Simulator

Monolithic

Typical Simulator

• Easy to use, great learning tool, but...

• Fixed configuration of memory map and
devices; often doesn’t match your target

• Not scriptable

• Not expandable

• Usually not open source

Emulators

MAME, VICE

• An emulator can be thought
of as simply a simulator that
runs in real-time

• MAME (Multi-Arcade
Machine Emulator)

• VICE (Versatile
Commodore Emulator)

MAME, VICE

• Game emulators are often more mature and
advanced than tools from hardware vendors

• Provide excellent software models of many
hardware building blocks (MPUs and I/O)

• Components are glued together into models
of specific systems

MAME, VICE

• Typically for a different audience

• Focused on emulation (e.g. playing games)
rather than as development aids

• Software is written entirely in C

• Often difficult or time consuming to make
your own system models

Py65

Py65

• Focused on being an embedded development
tool rather than a game emulator

• Provides building blocks for modeling systems
like VICE or MAME, but less mature

• Speed is not particularly important

• Python!

Py65

• Modules organized by 65xx family device

• Objects simulate device behavior

Py65

• Python Interactive Interpreter

Unit Tests

• Accurate emulation is much harder than it
may appear even for simple microprocessors

• Py65 has ~400 unit tests for its 6502 core
and test coverage is probably still < 75%

Unit Tests

Test suite verifies correct operation

Simple Loop

Simple Loop

• Since our MPU is just a Python object, we can
use the interactive interpreter.

• We can also drive it with our own programs
and test suites.

Simple Loop

Assembly Language Machine Language

Simple Loop

• Load memory

• Set the PC

• Step

• Observe X

Monitor

Monitor

• Microprocessors often run a “machine
language monitor” program.

• This is sometimes also called a “debugger”.

• Py65 has a monitor called Py65Mon.

Monitor

• Makes common tasks like loading binaries and
stepping through programs easier.

• Type “help” for commands.

• Commands mostly compatible with the
monitor in the VICE emulator.

Hello World

• Py65Mon can trap writes to the memory map
and display the bytes to STDOUT.

• This is enough to get us to “Hello World”

Hello World

• Program will read each
character and write to
$E001 until the null byte

• Py65Mon will trap the
write to $E001 and send
each byte to STDOUT

Hello World

• Load binary

• Set PC

• Run until RTS

Next Steps

Next Steps

• Finish the unit test suite for the 6502 MPU
core (every instruction, every mode)

• Character input trap for Py65Mon

• Run a BASIC interpreter (EhBASIC)!

Next Steps

• Two additional device models:

• 6522 Versatile Interface Adapter (VIA)

• 6551 Asynchronous Interface Adapter (ACIA)

Next Steps

• Add more features to Py65Mon

• Simple assembly and disassembly

• Select real hardware as target

• Documentation and tutorials

Q & A

Thanks!

