Py65: Microcontroller
Simulation with Python

PyWorks 2008
Mike Naberezny

|\ ETT e ELE
Software

http://maintainable.com

About Me

® http://mikenaberezny.com
® http://maintainable.com

® http://ohloh.net/accounts/mnaberez

Maintainable
Software

http://mikenaberezny.com
http://mikenaberezny.com
http://maintainable.com
http://maintainable.com
http://ohloh.net/accounts/mnaberez
http://ohloh.net/accounts/mnaberez

About Me

6502.0rg: The 6502 Microprocessor Resource
[&]http://6502.0rg/

Prototype PCB Assembly Source Code Analysis
6502 . OI"g 24 hour turn, Full-service, ROHS New Analyze code structure and uncover must-fix
the 6502 microprocessor resource customer discount bugs. Get Free trial now!
Ads by Google

Welcome to 6502.0rg! Projects Code Resources

6502.0rg is a resource for people interested in building hardware or writing software for the 6502 microprocessor and its

relatives.
* News and Site Updates

We continually strive to remain the largest and most complete source for 6502-related information in the world. This * Homebuilt Projects

. " . : M . * Source Code Repository
includes everything from articles and project descriptions to schematics and source code. « Hardware Mini-Projects
. . . N . T " " * Documents Archive
If you have anything to contribute, whether in electronic form or otherwise, please contact us. This site was built on « Newsletters and Magazines b
visitor contributions and we need your help to keep growing! « Tutorials anc Primers
« Book List [] [

o . « Commercial Support
©) News and Site Updates B eaiopaniTcas
* Discussion Groups
Find out what's new or changed on 6502.0rg. * Microcomputers & Trainers

©) Homebuilt Projects on the Web
. . * André Fachat's B-bit Pages
Check out over thirty homemade computers based on the 6502 microprocessor documented on the web. Most « Dallas Shell's SYM-1 pa%es
include schematics, source code, and pictures! « Garth Wilson's Projects

* Commodore PET Index
* Commodore Documents

p . (]
) Source Code Repository
A repository for software programs and useful subroutines written in 6502 assembly language. v e I y e a I S O I l I n e

) Hardware Mini-Projects

Learn how to interface hardware with your 6502 project through examples with schematics and source code.
©) Documents Archive

The Documents Archive houses documentation archived in electronic form that is available for download. This
includes original datasheets for almost any 6500 family part, applications notes, hardware manuals, and other

Gigabytes of 6502

A collection of early publications from the heyday of the 6502 is available inside the Documents Archive.
) Tutorials and Primers ° Y °
Lessons and step-by-step instructions for various tasks, tips and tricks, and reference material for developers. te C h n I C a I I n fo r m at I O n
Books for the 6502 Fanatic
If you're running to your local library for books, check out this list of must-read titles for the 6502 fanatic.
©) Commercial Support for the 6502

Distributors of 65xx chips, commercial development tools, trade magazines, and other commercial links useful to the
6502 enthusiast.

©) Development Tools

Maintainable
Software

http://6502.org
http://6502.org

About Py65

® Simulation of 65xx family hardware
components as Python objects

® Very new project: started July 2008
® Jarget audience
® Engineers working on embedded software

® Students learning how computers work

Maintainable
Software

About Py65

def test_inx_inc ' (self):
mpu = MPU(O)
mpu.x = @x@°9
mpu .memory[0x0000] = OxE8
mpu.step()
self.assertEquals(9x0001, mpu.pc)
self.assertEquals(@x0A, mpu.x)
self.assertEquals(®, mpu.flags & mpu.ZERO)
self.assertEquals(®, mpu.flags & mpu.NEGATIVE)

® Very low-level simulation

® Even this can be easier than dealing with the
real hardware

Maintainable
Software

Today’s Talk

6502 Yesterday & Today
Building & Programming
Py65 Simulator Overview

Simulation Demo

Q&A

Maintainable
Software

Ristory

O e S T T e

B Ny e -
-

Y T M e s hatme e
* 00 NN -~ .-
~y - - (X - - -

s DN -

® MOS Technology
released one of the

early microprocessors
in the mid 1970’.

® |t was well designed.

® |t was a fraction of the
cost of its competitors.

— " SR S R 3 = ST
s 8o E b e A AP DR S B S

- .

Maintainable
Software

® At this time, there were
no home computers.

® Microprocessors made

home computers possible.

® The 6502 made affordable
home computers possibl

Maintainable
Software

?tjlﬂﬂwuﬂ”ﬁfjggj
USER NOTES

MICROPROCESSOR SOFTWARE SEMINAR SCHEDULED FOR AUGUST 18-20

A three-day intensive course in software development, featuring the
KIM-1, will be held at Turf Inn on Wolf Road in Colonie, New York. The
course is being offered by three educators from Rensselaer Polytechnic
Institute, Troy, New York.

"Hands-on' experience will be stressed as each student will receive
his or her own KIM-1 and power supply. The cost of the seminar will be
$495.00 complete with KIM-1, power supply, course notes, I/0 interface,
etc. or §275.00 if you already have a LIM-1,

Interested parties should contact J. C. Williams, R. K. MacCrone,
or D. S. Yancy as soon as possible for registration or additional in-
foiriation about the course. They ca be reached at (518) 270-6495,

They must have firm commitments by the end of July in order to in-
sure that hardware will be ready by course time.

SETABERRRSB AR RS ANDRE

KIM-2, =3, AND -4 ARE ON THE WAY!!!

MOS TECHNOLOGY is now making more memory available for the KIM-1,
Starting August 16, 1976, MCS will be shipping two new memory expansion
boards--- the KIM-2 (4K static RAM) and the KIM-3 (8K static RAM). Both
boards will be assembled, tested, guaranteed for 90 days, and full burned-
in with high-speed static RAM. All buffering and control logic will be
included as well as on board regulators. A single KIM-2 or KIM-3 can be
wired directly to the KIM-1, but, if you need even more memory, you'll
have to wait for the KIM-4 Motherboard, which they say will be available
shortly. The price? $179.00 + 83,00 (shipping) for the KIM-2, and
$298,00 + $3.00 (shipping) for the KIM-3.

BELKOIIIERBRIES RS RRNE

T COMPLIMENTARY ISSUE

® With a 6502 and a few
support chips, a simple
computer could be made.

® People began building
their own computers.

ANCED INTERACTIVE MICROCOMPUTER -

® T[rainer boards like the
KIM-1,SYM-I, and
AlIM-65 became popular.

Maintainable
Software

’l‘ Rockwell International
..where s

cience gets downtobusiness

® Self-built computers and
trainers proliferated.

® They were too technical
for the average person.

® Pre-built computers like
the Commodore PET and
Apple Il made computers
accessible to everyone.

Maintainable
Software

By the early 1980’s, 6502-based computers were
everywhere. The personal computer revolution had begun.

Maintainable
Software

6502 Domination

Commodore PET, VIC-20, 64, |28...
Apple |, 11, 11+, lle, llc, ...

Atari 2600, 7800, 400, 800, ...
Nintendo NES ("02), SuperNES (‘816)

Countless others, late-70’s to mid-80’s

Maintainable
Software

Embedded

® Around the mid 1980’s, | 6-bit home computers
began to take over the market.

® 6502-based technology was produced in huge
quantities and more affordable than ever.

® 6502 applications shifted to games, embedded
devices, and industrial control applications.

Maintainable
Software

30+ Years of 6502

The legendary 65xx brand microprocessors with both 8-bit and 8/16-bit ISA’s keep
cranking out the unit volumes in ASIC and standard microcontroller forms
supplied by WDC and WDCs licensees.

Annual volumes in the hundreds (100’s) of millions of units keep adding in a
significant way to the estimated shipped volumes of five (5) to ten (10) billion
units.

With 200MHz+ 8-bit W65CO02S and 100MHz+ 8/16-bit W65C816S processors
coming on line in ASIC and FPGA forms, we see these annual volumes continuing
for a long, long time.

- Western Design Center, Inc.

Maintainable
Software

Building a

Small Computer

6502 System

Single 64K Address Space ($0000-$FFFF)

RAM, ROM, I/O are all mapped into this space
Address Lines select the address

Data Lines hold data to read/write at the address

Clock, RESET, decoding, other glue makes a system

Maintainable
Software

6502 System

{RES PH2[out)
Vss FPHO[m)
{IRO R/
Ve

A

L
B A ks

T
A N

shbassdana’

A X

DAIA BUS

eassssanesnsreRRees

-
-%
,;,

Ry S A

Vee
{PGM
HE 25
A8 ADDRESS BOS
A9
Al Mike Nabereany's 6504 SEC
{OE Drawn August 23, 1997
A0 o e R
[PBRST ¥ CONEes e
cc B TR S § o
TD ST Sy, AN - DT T
TOL {RET
GND RST

MAX1232

e e a‘ "

DAIA BUS

(o0t

0OSC1.0MH:z
o4 2o

Maintainable
Software

6502 System

MPU
Clock

///

(i

(a

|
T
(

JJ))))

)
G

W)

))
WL 77
y
PP
),’ T

|

Glue Logic
NOINM

VA M
/O Devices

T
)

|

@ Maintainable Each device is an object in Py65.

Software

Microcomputer

® Expandable, Reconfigurable
® Add or remove components, rewire

® [arger, more difficult to assemble

® Observable

® Address, data, and control lines are all
accessible with logic probe or oscilloscope

Maintainable
Software

Microcontroller

Components combined
into one package

Usually fixed memory map
Smaller, less power, etc.

Software compatibility
(same 6502 MPU core)

Maintainable
Software

Microcontroller

® Fixed configuration

® J[ypically not expandable

® Smaller package, less to assemble
® Less Observable

® Connections between internal components
cannot observed (need for simulation)

Maintainable
Software

Programming a

Small Computer

Assembly Language

® Assembler?!

® For microcontrollers and very small
computers, assembly language is still relevant
and often necessary

Maintainable
Software

Assembly Language

TOPNT = $01
* = $c000

CLRMEM = *

LDA #%$00 ;Set up zero value

TAY ;Initialize index pointer
CLRM1 = *

STA (TOPNT),Y ;Clear memory location

INY ;Advance index pointer

DEX ; Decrement counter

BNE CLRM1 ;Not zero, continue checking

RTS ; Return

cP00: a9 00 91 01 c8 ca dd fa 60

Maintainable
Software

Problems

® Assembling even small boards is time
consuming and takes some skill

® Software is developed on a PC and then
downloaded into the target device

® |t takes time and manual steps to download
the software into the target and test it

Maintainable
Software

Problems

® The software you write will often have issues
during development

® Debugging these problems is difficult... often a
controller hangs with no other clues as to

what happened

® Software tested manually is prone to regress

Maintainable
Software

Problems

® VVe want faster development time for very
low-level software, usually assembly language.

® Ve want a way to test our system designs
before committing to the hardware.

® Ve want a way to prove our software works
and will continue to work when changed.

Maintainable
Software

Simulation

Simulation

® Mimic the function of the hardware in a
software system on a PC workstation

® Test software without downloading it into the
target machine

® Allows the greatest visibility into the system

Maintainable
Software

Typical Simulator

‘6502 Simulator - test prog.65s
File Edit View Simulator Window Help

AEE B S Se ABErERM D @@

test prog.65s £
A={$3E 62, '»'. 00111110 CLK: 36 <-za0|
#u -

timer+3,x ®=($00 | 0, ', DODOOODOD N0 zO v cO
timer+3,x Y= {$UD 0, '', 00000oOD P= $20 00 e o0

dst > src+3

Bdstx1+2 WF [empystack-
;Ei:ﬁ PC=$1021 |LDA #3$57 Arg: |87, W, 01010111

Stat: Program is waiting for input data...

6502 pP Zero Page

68 66 °* * 0066

61 66 * * 0066 60 66 60 60
62 66 ° ' 0066 60 66 606 60
63 66 ° * 0066 00 60 60 Gﬁll

6502 yP Memory

08 66 60 606 bd 11111104
66 66 60 68
66 60 60 68
68 60 60 806

6502 pP Stack

1FF 18 'N' 06616 00 60 60 66 00 60 O(~
1FE 23 "#' 16823 10 A9 57 9D 65 EO BI

hd
tn2t, Col14 @[um| 4

Monolithic

Maintainable
Software

Typical Simulator

® FEasy to use, great learning tool, but...

® Fixed configuration of memory map and
devices; often doesn’t match your target

® Not scriptable
® Not expandable

® Usually not open source

Maintainable
Software

Emulators

MAME, VICE

® An emulator can be thought

of as simply a simulator that
runs in real-time

¢ MAME (Multi-Arcade
Machine Emulator)

® VICE (Versatile 0013057
Commodore Emulator)

Maintainable
Software

00 VICEplus: C64 emulator

MAME, VICE

® (Game emulators are often more mature and
advanced than tools from hardware vendors

® Provide excellent software models of many
hardware building blocks (MPUs and 1/O)

® Components are glued together into models
of specific systems

Maintainable
Software

MAME, VICE

Typically for a different audience

Focused on emulation (e.g. playing games)
rather than as development aids

Software is written entirely in C

Often difficult or time consuming to make
your own system models

Maintainable
Software

Py65

Focused on being an embedded development
tool rather than a game emulator

Provides building blocks for modeling systems
like VICE or MAME, but less mature

Speed is not particularly important

Python!

Maintainable
Software

Py65

® Modules organized by 65xx family device

® Objects simulate device behavior

Maintainable
Software

Py65

Python 2.4.3 (#1, Jun 29 2008, 19:01:46)

[GCC 4.0.1 (Apple Computer, Inc. build 5367)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> from py65 import mpu6502

>>> mpu = mpu6502.MPU()

>>> mpu

<6502: A=00, X=00, Y=00, Flags=20, SP=ff, P(=0000>

>>> mpu.a = Oxfe

>>> mpu

<6502: A=fe, X=00, Y=00, Flags=20, SP=ff, P(=0000>

>>>

® Python Interactive Interpreter

Maintainable
Software

Unit Tests

® Accurate emulation is much harder than it
may appear even for simple microprocessors

® Py65 has ~400 unit tests for its 6502 core
and test coverage is probably still < 75%

Maintainable
Software

Unit Tests

def test_ldy_immediate
mpu = MPUQ)
mpu.y = 0Ox00
mpu .memory[0x0000:0x0002] = (0xAQ, 0x80)
mpu.step()
self.assertEquals(0x2002, mpu.pc)
self.assertEquals(?x80, mpu.y)
self.assertEquals(mpu.NEGATIVE, mpu.flags & mpu.NEGATIVE)
self.assertEquals(®, mpu.flags & mpu.ZERO)

ts_n_flag(self):

def test_ldy_immediate
mpu = MPUQ)
mpu.y = OxFF
mpu .memory [0x0000: 0x0002] = (0xA0, 0x00)
mpu.step()
self.assertEquals(2x0002, mpu.pc)
self.assertEquals(2x00, mpu.y)
self.assertEquals(mpu.ZERO, mpu.flags & mpu.ZERO)
self.assertEquals(®, mpu.flags & mpu.NEGATIVE)

ts_z_flag(self):

Test suite verifies correct operation

Maintainable
Software

Simple Loop

Simple Loop

® Since our MPU is just a Python object, we can
use the interactive interpreter.

® Ve can also drive it with our own programs
and test suites.

Maintainable
Software

Simple Loop

*=$A000

LOOP:
INX : $A000 ES
JMP LOOP ; $A001 4C 00 AO

Assembly Language Machine Language

Maintainable
Software

Simple Loop

*_$A000 >>> from py65.mpu6502 import MPU

>>> mpu = MPUQ)

LOOP - >>> mpu.memory[0xA000:0xA003] = [Oxe8, Ox4c, Ox00, Oxad]
’ >>> mpu

INX ; $A000 E8 <6502: A=00, X=00, Y=00, Flags=20, SP=ff, PC=0000>
JMP LOOP ; $A001 4C 00 AQ

>>> mpu.pc = 0xad00
>>> mpu

<6502: A=00, X=00, Flags=20,
Load memory

Set the PC

>>> mpu.step()
<6502: A=00, X=01, Flags=20,

>>> mpu.step()
<6502: A=00, X=01, Flags=20,

Step
Observe X

>>> mpu.step()
<6502: A=00, X=02, Flags=20,

>>> mpu.step()
<6502: A=00, X=02, Flags=20,

L >>> mpu.step()
Maintainable <6502: A=00, X=03, Flags=20,
Software

Monitor

Monitor

® Microprocessors often run a “machine
language monitor” program.

® This is sometimes also called a “debugger”.

® Pyé65 has a monitor called Py65Mon.

Maintainable
Software

Monitor

$ py65mon
Py65 Monitor

<6502: A=00, X=00, Y=00, Flags=20, SP=Ff, PC=0000>
® Makes common tasks like loading binaries and
stepping through programs easier.
® Type “help” for commands.

® Commands mostly compatible with the
monitor in the VICE emulator.

Maintainable
Software

Hello VWorld

® Py65Mon can trap writes to the memory map
and display the bytes to STDOUT.

® This is enough to get us to “Hello World”

Maintainable
Software

Hello World

*=$C000
CHAROUT=$E001

HELLO: P .
e e Program will read each

LOOP: character and write to
LDA MESSAGE,X

BEQ DONE $EOO| until the null byte
STA CHAROUT
INX

IMP LOOP ® Py65Mon will trap the
e write to $E00| and send

RTS
each byte to STDOUT

MESSAGE = *
Itext "Hello, World!"
Ibyte 0

Maintainable
Software

Hello World

$ py65mon
Py65 Monitor

<6502: A-00, X=00, Y=00, Flags=20, SP=ff, PC-0000> ® |oad binary

.load "hello.bin" c000
Wrote +29 bytes from $c000 to $c@lc
® Set PC
<6502: A=00, X=00, Y=00, Flags=20, SP=ff, PC=0000>
.registers pc=c000 .
® Run until RTS

<6502: A=00, X=0d, Y=00, Flags=20, SP=ff, PC=c000>

.return
Hello, World!

Maintainable
Software

Next Steps

Next Steps

® Finish the unit test suite for the 6502 MPU
core (every instruction, every mode)

® Character input trap for Py65Mon
® Run a BASIC interpreter (EhBASIC)!

Maintainable
Software

Next Steps

® [wo additional device models:

® 6522 Versatile Interface Adapter (VIA)
® 6551 Asynchronous Interface Adapter (ACIA)

Maintainable
Software

Next Steps

® Add more features to Py65Mon
® Simple assembly and disassembly
® Select real hardware as target

® Documentation and tutorials

Maintainable
Software

Maintainable
Software

