Supervisor as a Platform

OSCON 2008
Mike Naberezny

|\ ETT e ELE
Software

http://maintainable.com

About Me

® http://mikenaberezny.com
® http://maintainable.com

® http://ohloh.net/accounts/mnaberez

Maintainable
Software

http://mikenaberezny.com
http://mikenaberezny.com
http://maintainable.com
http://maintainable.com
http://www.ohloh.net/accounts/mnaberez
http://www.ohloh.net/accounts/mnaberez

Goals

® Quickly learn the basics of Supervisor and
how to get it up & running.

® Explore the advantages of writing programs
specifically designed to take advantage of
Supervisor’s capabilities.

Maintainable
Software

Agenda

Supervisor Basics

Remote Control via XML-RPC
XML-RPC Interface Extensions

Event Notification System
Q&A

Maintainable
Software

Supervisor Basics

Supervisor Basics

® Supervisor is a Python program that allows you to
start, stop, and restart other programs on UNIX

systems. |t can restart crashed processes. Built on
Medusa.

® Comparable programs: daemontools, launchd, runit.

® Not focused on being "pid 0". Instead, focused on
supporting ad-hoc projects and extensibility.

Maintainable
Software

Supervisor Components

'supervisord' is the daemon program. Runs
arbitrary programs as child processes.

'supervisorctl' is a client program. Allows
users to control state of supervisord children

and view logs.

Web interface: start/stop/restart/view logs.

XML-RPC interface: arbitrary commands.

Maintainable
Software

Supervisor Config File

[inet_http_server]
port=127.0.0.1:9001

[supervisord]
logfile=/tmp/supervisord.log

[program:cat]
command=/bin/cat

autostart=Irue

[rpcinterface: supervisor]
supervisor.rpcinterface_factory = ...

Maintainable
Software

Security

® By default, users cannot start arbitrary
processes. They can stop, start, restart, get
info on the set of predefined processes.

® Username and password auth can be
configured for through-the-web manipulation

(XML-RPC and web interface).

® UNIX sockets can be used rather than TCP
sockets (or both at the same time).

Maintainable
Software

Starting Supervisord

[mnaberez@ox sup]$ bin/supervisord -n -c sample.conf

2007-11-12 12:11:32,581 INFO RPC interface 'supervisor' initialized
2007-11-12 12:11:32,581 CRIT Server 'inet_http_server' running without any
HTTP authentication checking

2007-11-12 12:11:32,582 INFO RPC interface 'supervisor' initialized
2007-11-12 12:11:32,583 INFO supervisord started with pid 13353

2007-11-12 12:11:33,586 INFO spawned: 'cat' with pid 13355

2007-11-12 12:11:34,589 INFO success: cat entered RUNNING state, process has
stayed up for > than 1 seconds (startsecs)

Maintainable
Software

Remote Control

via XML-RPC

e,

XML-RPC Interfaces

All common supervisor operations are
scriptable via XML-RPC.

supervisorctl communicates with supervisord
using XML-RPC. You do everything that
supervisorctl can do.

® eg. supervisor.startProcess(),

supervisor.stopProcess(),
supervisor.readProcessLog()

Maintainable

Software

Example:
Inspecting a Process

>>> import xmlrpclib
>>> § = xmlrpclib.ServerProxy('http://localhost:9001")

>>> S,.supervisor.getProcessInfo('cat’)

[{'statename': "RUNNING',
'group’': 'cat',
'name': 'cat',
'stop': 0,
'stderr_logfile': '/path/to/the/log'’

3]

Maintainable
Software

Example:
Stopping a Process

>>> import xmlrpclib
>>> § = xmlrpclib.ServerProxy('http://localhost:9001")

>>> §.supervisor.stopProcess('cat’)

True

Maintainable
Software

Example:
System Introspection

>>> import xmlrpclib
>>> § = xmlrpclib.ServerProxy('http://localhost:9001")

>>> §,.system.methodHelp('supervisor.getAllProcessInfo')
'Get info about all processes\n\n
@return array result An array of process status results\n'

Maintainable
Software

XML-RPC Namespaces

® Supervisor's XML-RPC interface is divided into
namespaces: built-in or your extensions

® Built-in Namespaces

® supervisor namespace has all of the core
functions for controlling processes.

® system namespace has introspection
functions. Try system.listMethods ()

Maintainable
Software

Extending the

XML-RPC Interface

Extending Supervisor With
New RPC Interfaces

RPC interface 'namespace interfaces' may be
plugged in to Supervisor.

Arbitrary functionality may be added.
Functionality usually "meta-process”

Code can be difficult to write because it
cannot block.

Maintainable
Software

Registering a Namespace

In the supervisord.conf configuration file:

[rpcinterface:thenamespace]
supervisor.rpcinterface_factory = <callable>
a_config_option = foo

another_config_option = bar

The <callable> is a factory that returns your
custom RPC namespace instance.

Maintainable
Software

Registering a Namespace

supervisor.rpcinterface_factory =
supervior_twiddler.make_twiddler_rpcinterface

® The <callable> uses a dot notation that specifies
any module in the PYTHONPATH.

® FEasily package, install, and enable/disable your
own extensions without modifying Supervisor.

Maintainable
Software

RPC Namespace Factory

def (supervisord, **config):
return TwiddlerNamespaceRPCInterface(supervisord, **config)

® Supervisor injects its instance as the first argument.
Everything important is available through this.

® Keyword arguments (**config) are built from the
options in the supervisord.conf under your
rpcinterface section.

® Methods of the instance returned by the factory are

¢

then available through RPC. Pseudo-private (*
methods are not accessible through the interface.

Maintainable
Software

Async Means No Blocking!

® Supervisor is single-threaded. Methods of
custom RPC interfaces cannot block.

NOT DONE YET sentinel allows functions
that would block to be called periodically
until they are done working.

Example: supervisor.rpcinterface's
SupervisorNamespaceRPClnterface class’
stopProcess() method.

Maintainable
Software

Extensions Available

® supervisor twiddler

® Manipulate Supervisor’s program definitions in
arbitrary ways without restarting

® Probably not for high security environments
® supervisor_ cache
® Store data in Supervisor as key/value pairs

® Good starting point - very simple extension

Maintainable
Software

Event Notification

Supervisor Events

® Events happen as Supervisor runs normally.

® Supervisor itself defines all event types, e.g.
PROCESS STATE CHANGE, when a
process changes its state.

® All important state changes of Supervisor and
its processes are fired as events.

Maintainable
Software

Event Listeners

® An event listener is a process that runs under
Supervisor.

® This process can be written in any language.

Communication with Supervisor is a simple text
protocol.

® A module (childutils) is packaged with
Supervisor to help writing these in Python.

Maintainable
Software

Event Listener Config

In the supervisord.conf configuration file:

[eventlistener:listen_for_proc_state_change]
command=/bin/on_state_change
process_name=%(program_name)s_%(process_num)92d
numprocs=5
events=PROCESS_STATE_CHANGE

The event listener can subscribe to any or all of
the Supervisor event types.

Maintainable
Software

Event Listener Sample

Python example, using childutils helper module:

import os
from supervisor import childutils

def main():
while 1:

headers, payload = childutils.listener.wait()

ename = headers['eventname']

if ename.startswith('PROCESS_COMMUNICATION'):
pheaders, pdata = childutils.eventdata(payload)
print pheaders, pdata

childutils.listener.ok()

Maintainable
Software

e,

Practical Uses

Monitor subprocess memory usage and kill
off or restart a process consuming "too
much” memory.

Provision new instances of programs "on the
fly" based on usage statistics.

Bidirectional communications between
"normal” supervisor-managed processes and
event listener processes.

Maintainable

Software

Maintainable
Software

Thanks!

® Supervisor & Extensions

® http://supervisord.org

® http://maintainable.com/software

® Contacts

® chrism(@agendaless.com

® mike@maintainable.com

Maintainable
Software

http://plope.com/software/supervisor2
http://plope.com/software/supervisor2
http://maintainable.com/software
http://maintainable.com/software
mailto:chrism@agendaless.com
mailto:chrism@agendaless.com
mailto:mike@maintainable.com
mailto:mike@maintainable.com
mailto:mike@maintainable.com
mailto:mike@maintainable.com

