
Supervisor as a Platform

OSCON 2008
Mike Naberezny

About Me

• http://mikenaberezny.com

• http://maintainable.com

• http://ohloh.net/accounts/mnaberez

http://mikenaberezny.com
http://mikenaberezny.com
http://maintainable.com
http://maintainable.com
http://www.ohloh.net/accounts/mnaberez
http://www.ohloh.net/accounts/mnaberez

• Quickly learn the basics of Supervisor and
how to get it up & running.

• Explore the advantages of writing programs
specifically designed to take advantage of
Supervisor’s capabilities.

Goals

Agenda

• Supervisor Basics

• Remote Control via XML-RPC

• XML-RPC Interface Extensions

• Event Notification System

• Q&A

Supervisor Basics

Supervisor Basics

• Supervisor is a Python program that allows you to
start, stop, and restart other programs on UNIX
systems. It can restart crashed processes. Built on
Medusa.

• Comparable programs: daemontools, launchd, runit.

• Not focused on being "pid 0". Instead, focused on
supporting ad-hoc projects and extensibility.

• 'supervisord' is the daemon program. Runs
arbitrary programs as child processes.

• 'supervisorctl' is a client program. Allows
users to control state of supervisord children
and view logs.

• Web interface: start/stop/restart/view logs.

• XML-RPC interface: arbitrary commands.

Supervisor Components

Supervisor Config File

Security
• By default, users cannot start arbitrary

processes. They can stop, start, restart, get
info on the set of predefined processes.

• Username and password auth can be
configured for through-the-web manipulation
(XML-RPC and web interface).

• UNIX sockets can be used rather than TCP
sockets (or both at the same time).

Starting Supervisord

Demo

Remote Control
via XML-RPC

XML-RPC Interfaces

• All common supervisor operations are
scriptable via XML-RPC.

• supervisorctl communicates with supervisord
using XML-RPC. You do everything that
supervisorctl can do.

• e.g. supervisor.startProcess(),
supervisor.stopProcess(),
supervisor.readProcessLog()

Example:
Inspecting a Process

Example:
Stopping a Process

Example:
System Introspection

XML-RPC Namespaces

• Supervisor’s XML-RPC interface is divided into
namespaces: built-in or your extensions

• Built-in Namespaces

• supervisor namespace has all of the core
functions for controlling processes.

• system namespace has introspection
functions. Try system.listMethods()

Extending the
XML-RPC Interface

Extending Supervisor With
New RPC Interfaces

• RPC interface 'namespace interfaces' may be
plugged in to Supervisor.

• Arbitrary functionality may be added.

• Functionality usually "meta-process"

• Code can be difficult to write because it
cannot block.

Registering a Namespace

In the supervisord.conf configuration file:

The <callable> is a factory that returns your
custom RPC namespace instance.

Registering a Namespace

• The <callable> uses a dot notation that specifies
any module in the PYTHONPATH.

• Easily package, install, and enable/disable your
own extensions without modifying Supervisor.

RPC Namespace Factory

• Supervisor injects its instance as the first argument.
Everything important is available through this.

• Keyword arguments (**config) are built from the
options in the supervisord.conf under your
rpcinterface section.

• Methods of the instance returned by the factory are
then available through RPC. Pseudo-private (“_”)
methods are not accessible through the interface.

Async Means No Blocking!

• Supervisor is single-threaded. Methods of
custom RPC interfaces cannot block.

• NOT_DONE_YET sentinel allows functions
that would block to be called periodically
until they are done working.

• Example: supervisor.rpcinterface's
SupervisorNamespaceRPCInterface class'
stopProcess() method.

Extensions Available

• supervisor_twiddler

• Manipulate Supervisor’s program definitions in
arbitrary ways without restarting

• Probably not for high security environments

• supervisor_cache

• Store data in Supervisor as key/value pairs

• Good starting point - very simple extension

Demo

Event Notification
System

Supervisor Events

• Events happen as Supervisor runs normally.

• Supervisor itself defines all event types, e.g.
PROCESS_STATE_CHANGE, when a
process changes its state.

• All important state changes of Supervisor and
its processes are fired as events.

Event Listeners

• An event listener is a process that runs under
Supervisor.

• This process can be written in any language.
Communication with Supervisor is a simple text
protocol.

• A module (childutils) is packaged with
Supervisor to help writing these in Python.

Event Listener Config

In the supervisord.conf configuration file:

The event listener can subscribe to any or all of
the Supervisor event types.

Event Listener Sample
Python example, using childutils helper module:

Practical Uses

• Monitor subprocess memory usage and kill
off or restart a process consuming "too
much" memory.

• Provision new instances of programs "on the
fly" based on usage statistics.

• Bidirectional communications between
"normal" supervisor-managed processes and
event listener processes.

Q&A

Thanks!
• Supervisor & Extensions

• http://supervisord.org

• http://maintainable.com/software

• Contacts

• chrism@agendaless.com

• mike@maintainable.com

http://plope.com/software/supervisor2
http://plope.com/software/supervisor2
http://maintainable.com/software
http://maintainable.com/software
mailto:chrism@agendaless.com
mailto:chrism@agendaless.com
mailto:mike@maintainable.com
mailto:mike@maintainable.com
mailto:mike@maintainable.com
mailto:mike@maintainable.com

